These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 26361955)
1. Identification of novel therapeutic target genes in acquired lapatinib-resistant breast cancer by integrative meta-analysis. Lee YS; Hwang SG; Kim JK; Park TH; Kim YR; Myeong HS; Choi JD; Kwon K; Jang CS; Ro YT; Noh YH; Kim SY Tumour Biol; 2016 Feb; 37(2):2285-97. PubMed ID: 26361955 [TBL] [Abstract][Full Text] [Related]
2. Topological network analysis of differentially expressed genes in cancer cells with acquired gefitinib resistance. Lee YS; Hwang SG; Kim JK; Park TH; Kim YR; Myeong HS; Kwon K; Jang CS; Noh YH; Kim SY Cancer Genomics Proteomics; 2015; 12(3):153-66. PubMed ID: 25977174 [TBL] [Abstract][Full Text] [Related]
3. Cross-platform meta-analysis of multiple gene expression profiles identifies novel expression signatures in acquired anthracycline-resistant breast cancer. Lee YS; Ryu SW; Bae SJ; Park TH; Kwon K; Noh YH; Kim SY Oncol Rep; 2015 Apr; 33(4):1985-93. PubMed ID: 25695524 [TBL] [Abstract][Full Text] [Related]
4. Integrative meta-analysis of multiple gene expression profiles in acquired gemcitabine-resistant cancer cell lines to identify novel therapeutic biomarkers. Lee YS; Kim JK; Ryu SW; Bae SJ; Kwon K; Noh YH; Kim SY Asian Pac J Cancer Prev; 2015; 16(7):2793-800. PubMed ID: 25854364 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of biomarkers and their functions for Lapatinib-resistant breast cancer. Zhang L; Huang Y; Zhuo W; Zhu Y; Zhu B; Chen Z Med Oncol; 2017 May; 34(5):89. PubMed ID: 28393315 [TBL] [Abstract][Full Text] [Related]
6. Screening and Identification of Key Biomarkers in Acquired Lapatinib-Resistant Breast Cancer. Bao S; Chen Y; Yang F; Sun C; Yang M; Li W; Huang X; Li J; Wu H; Yin Y Front Pharmacol; 2020; 11():577150. PubMed ID: 33013420 [TBL] [Abstract][Full Text] [Related]
7. Identifying differentially expressed genes and screening small molecule drugs for lapatinib-resistance of breast cancer by a bioinformatics strategy. Zhuo WL; Zhang L; Xie QC; Zhu B; Chen ZT Asian Pac J Cancer Prev; 2014; 15(24):10847-53. PubMed ID: 25605188 [TBL] [Abstract][Full Text] [Related]
8. High-efficient Screening Method for Identification of Key Genes in Breast Cancer Through Microarray and Bioinformatics. Liu Z; Liang G; Tan L; Su AN; Jiang W; Gong C Anticancer Res; 2017 Aug; 37(8):4329-4335. PubMed ID: 28739725 [TBL] [Abstract][Full Text] [Related]
9. Identification of candidate target genes of pituitary adenomas based on the DNA microarray. Zhou W; Ma CX; Xing YZ; Yan ZY Mol Med Rep; 2016 Mar; 13(3):2182-6. PubMed ID: 26782791 [TBL] [Abstract][Full Text] [Related]
10. Identification of breast cancer mechanism based on weighted gene coexpression network analysis. Guo X; Xiao H; Guo S; Dong L; Chen J Cancer Gene Ther; 2017 Aug; 24(8):333-341. PubMed ID: 28799567 [TBL] [Abstract][Full Text] [Related]
11. Identification of upstream transcription factors (TFs) for expression signature genes in breast cancer. Zang H; Li N; Pan Y; Hao J Gynecol Endocrinol; 2017 Mar; 33(3):193-198. PubMed ID: 27809618 [TBL] [Abstract][Full Text] [Related]
12. Gene Prioritization and Network Topology Analysis of Targeted Genes for Acquired Taxane Resistance by Meta-Analysis. Kim D; Lee YS; Kim JK; Kim SY Crit Rev Eukaryot Gene Expr; 2019; 29(6):581-597. PubMed ID: 32422012 [TBL] [Abstract][Full Text] [Related]
13. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer. Peng C; Ma W; Xia W; Zheng W Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450 [TBL] [Abstract][Full Text] [Related]
14. Discovering novel cancer bio-markers in acquired lapatinib resistance using Bayesian methods. Azad AKM; Alyami SA Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33857297 [TBL] [Abstract][Full Text] [Related]
15. Construction of an immunorelated protein-protein interaction network for clarifying the mechanism of burn. Gao Y; Nai W; Yang L; Lu Z; Shi P; Jin H; Wen H; Wang G Burns; 2016 Mar; 42(2):405-13. PubMed ID: 26739088 [TBL] [Abstract][Full Text] [Related]
16. Insights into significant pathways and gene interaction networks underlying breast cancer cell line MCF-7 treated with 17β-estradiol (E2). Huan J; Wang L; Xing L; Qin X; Feng L; Pan X; Zhu L Gene; 2014 Jan; 533(1):346-55. PubMed ID: 23978611 [TBL] [Abstract][Full Text] [Related]
17. Improving the prediction of chemotherapeutic sensitivity of tumors in breast cancer via optimizing the selection of candidate genes. Jiang L; Huang L; Kuang Q; Zhang J; Li M; Wen Z; He L Comput Biol Chem; 2014 Apr; 49():71-8. PubMed ID: 24440656 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanisms associated with breast cancer based on integrated gene expression profiling by bioinformatics analysis. Wu D; Han B; Guo L; Fan Z J Obstet Gynaecol; 2016 Jul; 36(5):615-21. PubMed ID: 26804550 [TBL] [Abstract][Full Text] [Related]
19. Unique gene expression profile in osteoarthritis synovium compared with cartilage: analysis of publicly accessible microarray datasets. Park R; Ji JD Rheumatol Int; 2016 Jun; 36(6):819-27. PubMed ID: 26942917 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the protein-protein interaction networks of differentially expressed genes in pulmonary embolism. Wang H; Wang C; Zhang L; Lu Y; Duan Q; Gong Z; Liang A; Song H; Wang L Mol Med Rep; 2015 Apr; 11(4):2527-33. PubMed ID: 25434468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]