These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26362289)

  • 1. Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication.
    Shi T; Dimitrov I; Zhang Y; Tax FE; Yi J; Gou X; Li J
    Plant Mol Biol; 2015 Oct; 89(3):253-61. PubMed ID: 26362289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions.
    Haas M; Schreiber M; Mascher M
    J Integr Plant Biol; 2019 Mar; 61(3):204-225. PubMed ID: 30414305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution.
    Davidson RM; Gowda M; Moghe G; Lin H; Vaillancourt B; Shiu SH; Jiang N; Robin Buell C
    Plant J; 2012 Aug; 71(3):492-502. PubMed ID: 22443345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of barley genetics and domestication in a global perspective.
    Pourkheirandish M; Komatsuda T
    Ann Bot; 2007 Nov; 100(5):999-1008. PubMed ID: 17761690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Useful insights from evolutionary biology for developing perennial grain crops.
    DeHaan LR; Van Tassel DL
    Am J Bot; 2014 Oct; 101(10):1801-19. PubMed ID: 25326622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptome profiling of near-isogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation.
    Jukanti AK; Heidlebaugh NM; Parrott DL; Fischer IA; McInnerney K; Fischer AM
    New Phytol; 2008; 177(2):333-349. PubMed ID: 18028296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomics analysis of hulless barley during grain development with a focus on starch biosynthesis.
    Tang Y; Zeng X; Wang Y; Bai L; Xu Q; Wei Z; Yuan H; Nyima T
    Funct Integr Genomics; 2017 Jan; 17(1):107-117. PubMed ID: 27913887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaeological data reveal slow rates of evolution during plant domestication.
    Purugganan MD; Fuller DQ
    Evolution; 2011 Jan; 65(1):171-83. PubMed ID: 20666839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of barley (Hordeum vulgare L.) development and senescence by the interaction between a chromosome six grain protein content locus, day length, and vernalization.
    Parrott DL; Downs EP; Fischer AM
    J Exp Bot; 2012 Feb; 63(3):1329-39. PubMed ID: 22090442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms involved in convergent crop domestication.
    Lenser T; Theißen G
    Trends Plant Sci; 2013 Dec; 18(12):704-14. PubMed ID: 24035234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley.
    Mascher M; Schuenemann VJ; Davidovich U; Marom N; Himmelbach A; Hübner S; Korol A; David M; Reiter E; Riehl S; Schreiber M; Vohr SH; Green RE; Dawson IK; Russell J; Kilian B; Muehlbauer GJ; Waugh R; Fahima T; Krause J; Weiss E; Stein N
    Nat Genet; 2016 Sep; 48(9):1089-93. PubMed ID: 27428749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration.
    Grossman JD; Rice KJ
    Evol Appl; 2012 Dec; 5(8):850-7. PubMed ID: 23346229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic insights into positive selection during barley domestication.
    Tao W; Bian J; Tang M; Zeng Y; Luo R; Ke Q; Li T; Li Y; Cui L
    BMC Plant Biol; 2022 Jun; 22(1):267. PubMed ID: 35641942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The deposition and characterization of starch in Brachypodium distachyon.
    Tanackovic V; Svensson JT; Jensen SL; Buléon A; Blennow A
    J Exp Bot; 2014 Oct; 65(18):5179-92. PubMed ID: 25056772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication.
    Ma Y; Liu M; Stiller J; Liu C
    BMC Genomics; 2019 Jan; 20(1):12. PubMed ID: 30616511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of single nucleotide polymorphisms based on RNA sequencing data of diverse bio-geographical accessions in barley.
    Takahagi K; Uehara-Yamaguchi Y; Yoshida T; Sakurai T; Shinozaki K; Mochida K; Saisho D
    Sci Rep; 2016 Sep; 6():33199. PubMed ID: 27616653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early senescence of the oldest leaves of Fe-deficient barley plants may contribute to phytosiderophore release from the roots.
    Higuchi K; Iwase J; Tsukiori Y; Nakura D; Kobayashi N; Ohashi H; Saito A; Miwa E
    Physiol Plant; 2014 Jul; 151(3):313-22. PubMed ID: 24611482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Senescence, nutrient remobilization, and yield in wheat and barley.
    Distelfeld A; Avni R; Fischer AM
    J Exp Bot; 2014 Jul; 65(14):3783-98. PubMed ID: 24470467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf senescence and nutrient remobilisation in barley and wheat.
    Gregersen PL; Holm PB; Krupinska K
    Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():37-49. PubMed ID: 18721310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley.
    Hein I; Barciszewska-Pacak M; Hrubikova K; Williamson S; Dinesen M; Soenderby IE; Sundar S; Jarmolowski A; Shirasu K; Lacomme C
    Plant Physiol; 2005 Aug; 138(4):2155-64. PubMed ID: 16040663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.