These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2636258)

  • 1. Adherence of multiple serovars of Chlamydia trachomatis to a common receptor on HeLa and McCoy cells is mediated by thermolabile protein(s).
    Vretou E; Goswami PC; Bose SK
    J Gen Microbiol; 1989 Dec; 135(12):3229-37. PubMed ID: 2636258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A heat-labile protein of Chlamydia trachomatis binds to HeLa cells and inhibits the adherence of chlamydiae.
    Joseph TD; Bose SK
    Proc Natl Acad Sci U S A; 1991 May; 88(9):4054-8. PubMed ID: 2023955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extensive heterogeneity of the protein composition of Chlamydia trachomatis following serial passage in two different cell lines.
    Goswami PC; Vretou E; Bose SK
    J Gen Microbiol; 1990 Aug; 136(8):1623-9. PubMed ID: 2262794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host modification of the adherence properties of Chlamydia trachomatis.
    Bose SK; Goswami PC
    J Gen Microbiol; 1986 Jun; 132(6):1631-9. PubMed ID: 3806051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attachment and internalization of a Chlamydia trachomatis lymphogranuloma venereum strain by McCoy cells: kinetics of infectivity and effect of lectins and carbohydrates.
    Söderlund G; Kihlström E
    Infect Immun; 1983 Dec; 42(3):930-5. PubMed ID: 6642670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification of Chlamydia trachomatis lymphogranuloma venereum elementary bodies and their interaction with HeLa cells.
    Bose SK; Paul RG
    J Gen Microbiol; 1982 Jun; 128(6):1371-9. PubMed ID: 6288839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis.
    Ward ME; Murray A
    J Gen Microbiol; 1984 Jul; 130(7):1765-80. PubMed ID: 6470672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant Escherichia coli clones expressing Chlamydia trachomatis gene products attach to human endometrial epithelial cells.
    Schmiel DH; Knight ST; Raulston JE; Choong J; Davis CH; Wyrick PB
    Infect Immun; 1991 Nov; 59(11):4001-12. PubMed ID: 1937759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface components of HeLa cells that inhibit cytadherence of Chlamydia trachomatis.
    Joseph TD; Bose SK
    FEMS Microbiol Lett; 1992 Mar; 70(2):177-80. PubMed ID: 1587463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Chlamydia trachomatis with human genital epithelium in culture.
    Moorman DR; Sixbey JW; Wyrick PB
    J Gen Microbiol; 1986 Apr; 132(4):1055-67. PubMed ID: 3760816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial characterization of a chlamydial receptor on mammalian cells.
    Kaul R; Chong KL; Wenman WM
    FEMS Microbiol Lett; 1989 Jan; 48(1):65-9. PubMed ID: 2714632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host passage-dependent wheat germ agglutinin-binding proteins of Chlamydia trachomatis.
    Goswami PC; Vretou E; Bose SK
    FEMS Microbiol Lett; 1991 Jun; 65(1):53-6. PubMed ID: 1874403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eucaryotic cells.
    Majeed M; Kihlström E
    Infect Immun; 1991 Dec; 59(12):4465-72. PubMed ID: 1937805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and antigenicity of chlamydial proteins that bind eukaryotic cell membrane proteins.
    Baghian A; Schnorr KL
    Am J Vet Res; 1992 Jun; 53(6):980-6. PubMed ID: 1378251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heparin-mediated inhibition of Chlamydia psittaci adherence to HeLa cells.
    Gutiérrez-Martín CB; Ojcius DM; Hsia R; Hellio R; Bavoil PM; Dautry-Varsat A
    Microb Pathog; 1997 Jan; 22(1):47-57. PubMed ID: 9032762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entry of the lymphogranuloma venereum strain of Chlamydia trachomatis into host cells involves cholesterol-rich membrane domains.
    Jutras I; Abrami L; Dautry-Varsat A
    Infect Immun; 2003 Jan; 71(1):260-6. PubMed ID: 12496174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of the glycan of the major outer membrane protein of Chlamydia trachomatis to HeLa cells.
    Swanson AF; Kuo CC
    Infect Immun; 1994 Jan; 62(1):24-8. PubMed ID: 8262634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effect of trypsin on infectivity of Chlamydia trachomatis: loss of infectivity requires cleavage of major outer membrane protein variable domains II and IV.
    Su H; Zhang YX; Barrera O; Watkins NG; Caldwell HD
    Infect Immun; 1988 Aug; 56(8):2094-100. PubMed ID: 2456271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential binding of Chlamydia trachomatis to subsets of human lymphocytes and induction of interleukin-6 and interferon-gamma.
    Fitzpatrick DR; Wie J; Webb D; Bonfiglioli R; Gardner ID; Mathews JD; Bielefeldt-Ohmann H
    Immunol Cell Biol; 1991 Oct; 69 ( Pt 5)():337-48. PubMed ID: 1787004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.