These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2636258)

  • 21. Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells.
    Davis CH; Raulston JE; Wyrick PB
    Infect Immun; 2002 Jul; 70(7):3413-8. PubMed ID: 12065480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of Chlamydia trachomatis.
    Zhang YX; Stewart S; Joseph T; Taylor HR; Caldwell HD
    J Immunol; 1987 Jan; 138(2):575-81. PubMed ID: 3540122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate.
    Taraktchoglou M; Pacey AA; Turnbull JE; Eley A
    Infect Immun; 2001 Feb; 69(2):968-76. PubMed ID: 11159992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polypeptide composition of Chlamydia trachomatis.
    Salari SH; Ward ME
    J Gen Microbiol; 1981 Apr; 123(2):197-207. PubMed ID: 7320696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences in the association of Chlamydia trachomatis serovar E and serovar L2 with epithelial cells in vitro may reflect biological differences in vivo.
    Davis CH; Wyrick PB
    Infect Immun; 1997 Jul; 65(7):2914-24. PubMed ID: 9199467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlamydia trachomatis infection of cultured motile cells after uptake of chlamydiae from the substratum.
    Campbell S; Yates PS; Richmond SJ
    J Gen Microbiol; 1993 Sep; 139(9):2151-8. PubMed ID: 8245840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of surface-exposed epitopes on Chlamydia trachomatis by immune electron microscopy.
    Collett BA; Newhall WJ; Jersild RA; Jones RB
    J Gen Microbiol; 1989 Jan; 135(1):85-94. PubMed ID: 2476526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differences in growth characteristics and elementary body associated cytotoxicity between Chlamydia trachomatis oculogenital serovars D and H and Chlamydia muridarum.
    Lyons JM; Ito JI; Peña AS; Morré SA
    J Clin Pathol; 2005 Apr; 58(4):397-401. PubMed ID: 15790704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes.
    Wenman WM; Meuser RU
    J Bacteriol; 1986 Feb; 165(2):602-7. PubMed ID: 3511037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antichlamydial activity of tear fluid.
    Elbagir AN; Stenberg K; Fröman G; Mårdh PA
    Eye (Lond); 1989; 3 ( Pt 6)():854-9. PubMed ID: 2630370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specific antigens of Chlamydia pecorum and their homologues in C psittaci and C trachomatis.
    Baghian A; Kousoulas K; Truax R; Storz J
    Am J Vet Res; 1996 Dec; 57(12):1720-5. PubMed ID: 8950425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monoclonal antibody neutralization of unmanipulated Chlamydia trachomatis serovar A infection of human epithelioid cells (A-431).
    Barsoum IS; Goodman TA; Hardin LK; Colley DG
    Med Microbiol Immunol; 1989; 178(2):113-20. PubMed ID: 2733633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [A method for the preparation of a Chlamydiae group-specific antigen on hela-229 cells infected with a strain of "Chlamydia trachomatis" for use in the complement fixation test (author's transl)].
    Colimon R; Ferchal F; Pérol Y
    Ann Microbiol (Paris); 1979 Oct; 130B(3):313-21. PubMed ID: 533072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neutralization of Chlamydia trachomatis: kinetics and stoichiometry.
    Peeling RW; Brunham RC
    Infect Immun; 1991 Aug; 59(8):2624-30. PubMed ID: 1855982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective translocation of annexins during intracellular redistribution of Chlamydia trachomatis in HeLa and McCoy cells.
    Majeed M; Ernst JD; Magnusson KE; Kihlström E; Stendahl O
    Infect Immun; 1994 Jan; 62(1):126-34. PubMed ID: 8262618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differentiation of Chlamydia trachomatis lymphogranuloma venereum-related serovars from other serovars using multiplex allele-specific polymerase chain reaction and high-resolution melting analysis.
    Cai L; Kong F; Toi C; van Hal S; Gilbert GL
    Int J STD AIDS; 2010 Feb; 21(2):101-4. PubMed ID: 20089994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antibody-neutralizing activity against all urogenital Chlamydia trachomatis serovars in Chlamydia suis-infected pigs.
    Donati M; Di Francesco A; Delucca F; Di Paolo M; Battilani M; Balboni A; Baldelli R; Cevenini R
    FEMS Immunol Med Microbiol; 2011 Feb; 61(1):125-8. PubMed ID: 21214636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biology of Chlamydia.
    Bergan T
    Scand J Infect Dis Suppl; 1982; 32():11-5. PubMed ID: 6958006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Properties of monoclonal antibodies to the genus-specific antigen of Chlamydia and their use for antigen detection by reverse passive haemagglutination.
    Thornley MJ; Zamze SE; Byrne MD; Lusher M; Evans RT
    J Gen Microbiol; 1985 Jan; 131(1):7-15. PubMed ID: 3921656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chlamydia trachomatis and Chlamydia pneumoniae bind specifically to phosphatidylethanolamine in HeLa cells and to GalNAc beta 1-4Gal beta 1-4GLC sequences-found in asialo-GM1 and asial-GM2.
    Krivan HC; Nilsson B; Lingwood CA; Ryu H
    Biochem Biophys Res Commun; 1991 Mar; 175(3):1082-9. PubMed ID: 2025240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.