These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 26362805)
1. Describing sorption of pharmaceuticals to lake and river sediments, and sewage sludge from UNESCO Biosphere Reserve Kristianstads Vattenrike by chromatographic asymmetry factors and recovery measurements. Svahn O; Björklund E J Chromatogr A; 2015 Oct; 1415():73-82. PubMed ID: 26362805 [TBL] [Abstract][Full Text] [Related]
2. Pharmaceutical Residues Affecting the UNESCO Biosphere Reserve Kristianstads Vattenrike Wetlands: Sources and Sinks. Björklund E; Svahn O; Bak S; Bekoe SO; Hansen M Arch Environ Contam Toxicol; 2016 Oct; 71(3):423-36. PubMed ID: 27480162 [TBL] [Abstract][Full Text] [Related]
3. Sediment-water interactions of pharmaceutical residues in the river environment. Zhou J; Broodbank N Water Res; 2014 Jan; 48():61-70. PubMed ID: 24091188 [TBL] [Abstract][Full Text] [Related]
4. Colloids as a sink for certain pharmaceuticals in the aquatic environment. Maskaoui K; Zhou JL Environ Sci Pollut Res Int; 2010 May; 17(4):898-907. PubMed ID: 20024675 [TBL] [Abstract][Full Text] [Related]
5. Quantitative structure-property relationships for predicting sorption of pharmaceuticals to sewage sludge during waste water treatment processes. Berthod L; Whitley DC; Roberts G; Sharpe A; Greenwood R; Mills GA Sci Total Environ; 2017 Feb; 579():1512-1520. PubMed ID: 27919554 [TBL] [Abstract][Full Text] [Related]
6. PAH desorption from sediments with different contents of organic carbon from wastewater receiving rivers. Qi W; Liu H; Qu J; Ren H; Xu W Environ Sci Pollut Res Int; 2011 Mar; 18(3):346-54. PubMed ID: 20680698 [TBL] [Abstract][Full Text] [Related]
7. Sorption of selected pharmaceuticals by a river sediment: role and mechanisms of sediment or Aldrich humic substances. Le Guet T; Hsini I; Labanowski J; Mondamert L Environ Sci Pollut Res Int; 2018 May; 25(15):14532-14543. PubMed ID: 29527647 [TBL] [Abstract][Full Text] [Related]
8. Sorption of selected pharmaceuticals and pesticides on different river sediments. Radović TT; Grujić SD; Kovačević SR; Laušević MD; Dimkić MA Environ Sci Pollut Res Int; 2016 Dec; 23(24):25232-25244. PubMed ID: 27687759 [TBL] [Abstract][Full Text] [Related]
9. Impacts of compound properties and sediment characteristics on the sorption behaviour of pharmaceuticals in aquatic systems. Al-Khazrajy OSA; Boxall ABA J Hazard Mater; 2016 Nov; 317():198-209. PubMed ID: 27270139 [TBL] [Abstract][Full Text] [Related]
10. Partitioning behavior of five pharmaceutical compounds to activated sludge and river sediment. Jones OA; Voulvoulis N; Lester JN Arch Environ Contam Toxicol; 2006 Apr; 50(3):297-305. PubMed ID: 16328615 [TBL] [Abstract][Full Text] [Related]
11. The influence of aeration rate on the sorption of emerging pharmaceuticals in activated sludge. Salvador DG; Pavoni JF; Tessaro IC Environ Technol; 2023 Jul; 44(17):2549-2562. PubMed ID: 35107039 [TBL] [Abstract][Full Text] [Related]
12. Multi-residue method for trace level determination of pharmaceuticals in solid samples using pressurized liquid extraction followed by liquid chromatography/quadrupole-linear ion trap mass spectrometry. Jelić A; Petrović M; Barceló D Talanta; 2009 Nov; 80(1):363-71. PubMed ID: 19782237 [TBL] [Abstract][Full Text] [Related]
13. Spatial distribution of pharmaceuticals in conventional wastewater treatment plant with Sludge Treatment Reed Beds technology. Kołecka K; Gajewska M; Stepnowski P; Caban M Sci Total Environ; 2019 Jan; 647():149-157. PubMed ID: 30077845 [TBL] [Abstract][Full Text] [Related]
14. Multi-residue screening of prioritised human pharmaceuticals, illicit drugs and bactericides in sediments and sludge. Langford KH; Reid M; Thomas KV J Environ Monit; 2011 Aug; 13(8):2284-91. PubMed ID: 21725567 [TBL] [Abstract][Full Text] [Related]
15. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Radjenović J; Petrović M; Barceló D Water Res; 2009 Feb; 43(3):831-41. PubMed ID: 19091371 [TBL] [Abstract][Full Text] [Related]
16. Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Yamamoto H; Nakamura Y; Moriguchi S; Nakamura Y; Honda Y; Tamura I; Hirata Y; Hayashi A; Sekizawa J Water Res; 2009 Feb; 43(2):351-62. PubMed ID: 19041113 [TBL] [Abstract][Full Text] [Related]
17. Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment. Martínez-Hernández V; Meffe R; Herrera S; Arranz E; de Bustamante I Sci Total Environ; 2014 Feb; 472():273-81. PubMed ID: 24291627 [TBL] [Abstract][Full Text] [Related]
18. Sorption behavior of 20 wastewater originated micropollutants in groundwater--column experiments with pharmaceutical residues and industrial agents. Burke V; Treumann S; Duennbier U; Greskowiak J; Massmann G J Contam Hydrol; 2013 Nov; 154():29-41. PubMed ID: 24077094 [TBL] [Abstract][Full Text] [Related]
20. [Potential Risk and Distribution Characteristics of PPCPs in Surface Water and Sediment from Rivers and Lakes in Beijing, China]. Zhang PW; Zhou HD; Zhao GF; Li K; Zhao XH; Liu QN; Ren M; Zhao DD; Li DJ Huan Jing Ke Xue; 2017 May; 38(5):1852-1862. PubMed ID: 29965089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]