BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26362850)

  • 1. Hsp90/Cdc37 assembly modulates TGFβ receptor-II to act as a profibrotic regulator of TGFβ signaling during cardiac hypertrophy.
    Datta R; Bansal T; Rana S; Datta K; Chattopadhyay S; Chawla-Sarkar M; Sarkar S
    Cell Signal; 2015 Dec; 27(12):2410-24. PubMed ID: 26362850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts.
    García R; Merino D; Gómez JM; Nistal JF; Hurlé MA; Cortajarena AL; Villar AV
    Cell Signal; 2016 Oct; 28(10):1563-79. PubMed ID: 27418101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy.
    Datta R; Bansal T; Rana S; Datta K; Datta Chaudhuri R; Chawla-Sarkar M; Sarkar S
    Mol Cell Biol; 2017 Mar; 37(6):. PubMed ID: 28031326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of cardiac TGFβ-mediated profibrotic events by inhibition of Hsp90 with engineered protein.
    Cáceres RA; Chavez T; Maestro D; Palanca AR; Bolado P; Madrazo F; Aires A; Cortajarena AL; Villar AV
    J Mol Cell Cardiol; 2018 Oct; 123():75-87. PubMed ID: 30193958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical regulation of TGFbeta signaling by Hsp90.
    Wrighton KH; Lin X; Feng XH
    Proc Natl Acad Sci U S A; 2008 Jul; 105(27):9244-9. PubMed ID: 18591668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HILI inhibits TGF-β signaling by interacting with Hsp90 and promoting TβR degradation.
    Zhang K; Lu Y; Yang P; Li C; Sun H; Tao D; Liu Y; Zhang S; Ma Y
    PLoS One; 2012; 7(7):e41973. PubMed ID: 22848678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adapter molecule DOC-2 is differentially expressed in pressure and volume overload hypertrophy and inhibits collagen synthesis in cardiac fibroblasts.
    Kumbar DH; VanBergen A; Ocampo C; Muangmingsuk S; Griffin AJ; Gupta M
    J Appl Physiol (1985); 2007 May; 102(5):2024-32. PubMed ID: 17255372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A direct interaction between TGFbeta activated kinase 1 and the TGFbeta type II receptor: implications for TGFbeta signalling and cardiac hypertrophy.
    Watkins SJ; Jonker L; Arthur HM
    Cardiovasc Res; 2006 Feb; 69(2):432-9. PubMed ID: 16360132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective inhibition of activin receptor-like kinase 5 signaling blocks profibrotic transforming growth factor beta responses in skin fibroblasts.
    Mori Y; Ishida W; Bhattacharyya S; Li Y; Platanias LC; Varga J
    Arthritis Rheum; 2004 Dec; 50(12):4008-21. PubMed ID: 15593186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De-ubiquitinating enzyme, USP11, promotes transforming growth factor β-1 signaling through stabilization of transforming growth factor β receptor II.
    Jacko AM; Nan L; Li S; Tan J; Zhao J; Kass DJ; Zhao Y
    Cell Death Dis; 2016 Nov; 7(11):e2474. PubMed ID: 27853171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrigendum to "Hsp90/Cdc37 assembly modulates TGFβ receptor-II to act as a profibrotic regulator of TGFβ signaling during cardiac hypertrophy" [Cell. Signal. 27 (12) (2015) 2410-2424].
    Datta R; Bansal T; Rana S; Datta K; Chattopadhyay S; Chawla-Sarkar M; Sarkar S
    Cell Signal; 2020 Jan; 65():109437. PubMed ID: 31668398
    [No Abstract]   [Full Text] [Related]  

  • 12. The CDC37-HSP90 chaperone complex co-translationally degrades the nascent kinase-dead mutant of HIPK2.
    Müller JP; Klempnauer KH
    FEBS Lett; 2021 Jun; 595(11):1559-1568. PubMed ID: 33786814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90.
    Chen G; Cao P; Goeddel DV
    Mol Cell; 2002 Feb; 9(2):401-10. PubMed ID: 11864612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of HSP90, CDC37, and CRM1 as modulators of P16(INK4A) activity in rat liver carcinogenesis and human liver cancer.
    Pascale RM; Simile MM; Calvisi DF; Frau M; Muroni MR; Seddaiu MA; Daino L; Muntoni MD; De Miglio MR; Thorgeirsson SS; Feo F
    Hepatology; 2005 Dec; 42(6):1310-9. PubMed ID: 16317707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid activation of c-Src kinase by dioxin is mediated by the Cdc37-HSP90 complex as part of Ah receptor signaling in MCF10A cells.
    Park S; Dong B; Matsumura F
    Biochemistry; 2007 Jan; 46(3):899-908. PubMed ID: 17223712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hsp90 co-chaperones Cdc37 and Sti1 interact physically and genetically.
    Abbas-Terki T; Briand PA; Donzé O; Picard D
    Biol Chem; 2002 Sep; 383(9):1335-42. PubMed ID: 12437126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis.
    Tomcik M; Zerr P; Pitkowski J; Palumbo-Zerr K; Avouac J; Distler O; Becvar R; Senolt L; Schett G; Distler JH
    Ann Rheum Dis; 2014 Jun; 73(6):1215-22. PubMed ID: 23661493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel protein distinguishes between quiescent and activated forms of the type I transforming growth factor beta receptor.
    Charng MJ; Zhang D; Kinnunen P; Schneider MD
    J Biol Chem; 1998 Apr; 273(16):9365-8. PubMed ID: 9545258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epithelial-mesenchymal transformation in the embryonic heart is mediated through distinct pertussis toxin-sensitive and TGFbeta signal transduction mechanisms.
    Boyer AS; Erickson CP; Runyan RB
    Dev Dyn; 1999 Jan; 214(1):81-91. PubMed ID: 9915578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An increased transforming growth factor beta receptor type I:type II ratio contributes to elevated collagen protein synthesis that is resistant to inhibition via a kinase-deficient transforming growth factor beta receptor type II in scleroderma.
    Pannu J; Gore-Hyer E; Yamanaka M; Smith EA; Rubinchik S; Dong JY; Jablonska S; Blaszczyk M; Trojanowska M
    Arthritis Rheum; 2004 May; 50(5):1566-77. PubMed ID: 15146427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.