These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26363227)

  • 61. Receptor-independent fluid-phase macropinocytosis promotes arterial foam cell formation and atherosclerosis.
    Lin HP; Singla B; Ahn W; Ghoshal P; Blahove M; Cherian-Shaw M; Chen A; Haller A; Hui DY; Dong K; Zhou J; White J; Stranahan AM; Jasztal A; Lucas R; Stansfield BK; Fulton D; Chlopicki S; Csányi G
    Sci Transl Med; 2022 Sep; 14(663):eadd2376. PubMed ID: 36130017
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice.
    Caravaggio JW; Hasu M; MacLaren R; Thabet M; Raizman JE; Veinot JP; Marcel YL; Milne RW; Whitman SC
    Cardiovasc Pathol; 2013; 22(6):458-64. PubMed ID: 23684818
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II.
    Kuchibhotla S; Vanegas D; Kennedy DJ; Guy E; Nimako G; Morton RE; Febbraio M
    Cardiovasc Res; 2008 Apr; 78(1):185-96. PubMed ID: 18065445
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Design and validation of a specific scavenger receptor class AI binding peptide for targeting the inflammatory atherosclerotic plaque.
    Segers FM; Yu H; Molenaar TJ; Prince P; Tanaka T; van Berkel TJ; Biessen EA
    Arterioscler Thromb Vasc Biol; 2012 Apr; 32(4):971-8. PubMed ID: 22282357
    [TBL] [Abstract][Full Text] [Related]  

  • 65. CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ.
    Fan J; Liu L; Liu Q; Cui Y; Yao B; Zhang M; Gao Y; Fu Y; Dai H; Pan J; Qiu Y; Liu CH; He F; Wang Y; Zhang L
    Nat Commun; 2019 Jan; 10(1):425. PubMed ID: 30683852
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice.
    Hasan ST; Zingg JM; Kwan P; Noble T; Smith D; Meydani M
    Atherosclerosis; 2014 Jan; 232(1):40-51. PubMed ID: 24401215
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Deficiency in lymphotoxin β receptor protects from atherosclerosis in apoE-deficient mice.
    Grandoch M; Feldmann K; Göthert JR; Dick LS; Homann S; Klatt C; Bayer JK; Waldheim JN; Rabausch B; Nagy N; Oberhuber A; Deenen R; Köhrer K; Lehr S; Homey B; Pfeffer K; Fischer JW
    Circ Res; 2015 Apr; 116(8):e57-68. PubMed ID: 25740843
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tanshinone II-A inhibits oxidized LDL-induced LOX-1 expression in macrophages by reducing intracellular superoxide radical generation and NF-κB activation.
    Xu S; Liu Z; Huang Y; Le K; Tang F; Huang H; Ogura S; Little PJ; Shen X; Liu P
    Transl Res; 2012 Aug; 160(2):114-24. PubMed ID: 22677363
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice.
    Terasaki M; Hiromura M; Mori Y; Kohashi K; Nagashima M; Kushima H; Watanabe T; Hirano T
    PLoS One; 2015; 10(11):e0143396. PubMed ID: 26606676
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mst1 participates in the atherosclerosis progression through macrophage autophagy inhibition and macrophage apoptosis enhancement.
    Wang T; Zhang L; Hu J; Duan Y; Zhang M; Lin J; Man W; Pan X; Jiang Z; Zhang G; Gao B; Wang H; Sun D
    J Mol Cell Cardiol; 2016 Sep; 98():108-16. PubMed ID: 27496379
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Celosins inhibit atherosclerosis in ApoE
    Tang Y; Wu H; Shao B; Wang Y; Liu C; Guo M
    J Ethnopharmacol; 2018 Apr; 215():74-82. PubMed ID: 29292046
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Loss of apoptosis regulator through modulating IAP expression (ARIA) protects blood vessels from atherosclerosis.
    Matsuo K; Akakabe Y; Kitamura Y; Shimoda Y; Ono K; Ueyama T; Matoba S; Yamada H; Hatakeyama K; Asada Y; Emoto N; Ikeda K
    J Biol Chem; 2015 Feb; 290(6):3784-92. PubMed ID: 25533470
    [TBL] [Abstract][Full Text] [Related]  

  • 73. CD163 deficiency increases foam cell formation and plaque progression in atherosclerotic mice.
    Gutiérrez-Muñoz C; Méndez-Barbero N; Svendsen P; Sastre C; Fernández-Laso V; Quesada P; Egido J; Escolá-Gil JC; Martín-Ventura JL; Moestrup SK; Blanco-Colio LM
    FASEB J; 2020 Nov; 34(11):14960-14976. PubMed ID: 32924185
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structures and anti-atherosclerotic effects of 1,6-α-glucans from Fructus Corni.
    Zhang XW; Sui Y; Liu XX; Fu CY; Qiao YH; Liu WJ; Li ZZ; Li XQ; Cao W
    Int J Biol Macromol; 2020 Oct; 161():1346-1357. PubMed ID: 32784023
    [TBL] [Abstract][Full Text] [Related]  

  • 75.
    Fang S; Sun S; Cai H; Zou X; Wang S; Hao X; Wan X; Tian J; Li Z; He Z; Huang W; Liang C; Zhang Z; Yang L; Tian J; Yu B; Sun B
    Theranostics; 2021; 11(19):9358-9375. PubMed ID: 34646375
    [No Abstract]   [Full Text] [Related]  

  • 76. Pim-2 kinase inhibits inflammation by suppressing the mTORC1 pathway in atherosclerosis.
    Liao M; Hu F; Qiu Z; Li J; Huang C; Xu Y; Cheng X
    Aging (Albany NY); 2021 Sep; 13(18):22412-22431. PubMed ID: 34547720
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mindin deficiency in macrophages protects against foam cell formation and atherosclerosis by targeting LXR-β.
    Zhang C; Qin JJ; Gong FH; Tong JJ; Cheng WL; Wang H; Zhang Y; Zhu X; She ZG; Xia H; Zhu LH
    Clin Sci (Lond); 2018 Jun; 132(11):1199-1213. PubMed ID: 29695588
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway.
    Qin L; Yang YB; Yang YX; Zhu N; Liu Z; Ni YG; Li SX; Zheng XL; Liao DF
    Clin Exp Pharmacol Physiol; 2016 Feb; 43(2):182-92. PubMed ID: 26666965
    [TBL] [Abstract][Full Text] [Related]  

  • 79. MicroRNA-16 suppresses the activation of inflammatory macrophages in atherosclerosis by targeting PDCD4.
    Liang X; Xu Z; Yuan M; Zhang Y; Zhao B; Wang J; Zhang A; Li G
    Int J Mol Med; 2016 Apr; 37(4):967-75. PubMed ID: 26936421
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Targeting the KCa3.1 channel suppresses diabetes-associated atherosclerosis via the STAT3/CD36 axis.
    Jiang XX; Bian W; Zhu YR; Wang Z; Ye P; Gu Y; Zhang H; Zuo G; Li X; Zhu L; Liu Z; Sun C; Chen SL; Zhang DM
    Diabetes Res Clin Pract; 2022 Mar; 185():109776. PubMed ID: 35149165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.