BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 26363350)

  • 1. Arterial impulse model for the BOLD response to brief neural activation.
    Kim JH; Ress D
    Neuroimage; 2016 Jan; 124(Pt A):394-408. PubMed ID: 26363350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of the cerebral blood flow response to brief neural activity in human visual cortex.
    Kim JH; Taylor AJ; Wang DJ; Zou X; Ress D
    J Cereb Blood Flow Metab; 2020 Sep; 40(9):1823-1837. PubMed ID: 31429358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The absolute CBF response to activation is preserved during elevated perfusion: Implications for neurovascular coupling measures.
    Whittaker JR; Driver ID; Bright MG; Murphy K
    Neuroimage; 2016 Jan; 125():198-207. PubMed ID: 26477657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional MRI during hyperbaric oxygen: Effects of oxygen on neurovascular coupling and BOLD fMRI signals.
    Cardenas DP; Muir ER; Huang S; Boley A; Lodge D; Duong TQ
    Neuroimage; 2015 Oct; 119():382-9. PubMed ID: 26143203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the dynamic relationship between cerebral blood flow and the BOLD signal: Implications for quantitative functional MRI.
    Simon AB; Buxton RB
    Neuroimage; 2015 Aug; 116():158-67. PubMed ID: 25862267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of the transient neurovascular response based on prompt arterial dilation.
    Kim JH; Khan R; Thompson JK; Ress D
    J Cereb Blood Flow Metab; 2013 Sep; 33(9):1429-39. PubMed ID: 23756690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMR
    Huber L; Uludağ K; Möller HE
    Neuroimage; 2019 Aug; 197():742-760. PubMed ID: 28736310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echo-time dependence of the BOLD response transients - A window into brain functional physiology.
    Havlicek M; Ivanov D; Poser BA; Uludag K
    Neuroimage; 2017 Oct; 159():355-370. PubMed ID: 28729160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the blood oxygen level dependent hemodynamic response function in human subcortical regions with high spatiotemporal resolution.
    Kim JH; Taylor AJ; Himmelbach M; Hagberg GE; Scheffler K; Ress D
    Front Neurosci; 2022; 16():1009295. PubMed ID: 36303946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses.
    Xu F; Li W; Liu P; Hua J; Strouse JJ; Pekar JJ; Lu H; van Zijl PCM; Qin Q
    Hum Brain Mapp; 2018 Jan; 39(1):344-353. PubMed ID: 29024300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the hemodynamic response to brain activation.
    Buxton RB; Uludağ K; Dubowitz DJ; Liu TT
    Neuroimage; 2004; 23 Suppl 1():S220-33. PubMed ID: 15501093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation.
    Kim SG; Rostrup E; Larsson HB; Ogawa S; Paulson OB
    Magn Reson Med; 1999 Jun; 41(6):1152-61. PubMed ID: 10371447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Functional MRI Approach for Investigating Modulations of Brain Oxygen Metabolism.
    Griffeth VE; Blockley NP; Simon AB; Buxton RB
    PLoS One; 2013; 8(6):e68122. PubMed ID: 23826367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals.
    Sicard KM; Duong TQ
    Neuroimage; 2005 Apr; 25(3):850-8. PubMed ID: 15808985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinotopic variations of the negative blood-oxygen-level dependent hemodynamic response function in human primary visual cortex.
    de la Rosa N; Ress D; Taylor AJ; Kim JH
    J Neurophysiol; 2021 Apr; 125(4):1045-1057. PubMed ID: 33625949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated models of neurovascular coupling and BOLD signals: Responses for varying neural activations.
    Mathias EJ; Kenny A; Plank MJ; David T
    Neuroimage; 2018 Jul; 174():69-86. PubMed ID: 29526745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional single-scan approach for the measurement of changes in cerebral blood volume, blood flow, and blood oxygenation-weighted signals during functional stimulation.
    Cheng Y; Qin Q; van Zijl PCM; Pekar JJ; Hua J
    Neuroimage; 2017 Feb; 147():976-984. PubMed ID: 28041979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI.
    Uludağ K; Dubowitz DJ; Yoder EJ; Restom K; Liu TT; Buxton RB
    Neuroimage; 2004 Sep; 23(1):148-55. PubMed ID: 15325361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral blood volume changes during the BOLD post-stimulus undershoot measured with a combined normoxia/hyperoxia method.
    Liu EY; Haist F; Dubowitz DJ; Buxton RB
    Neuroimage; 2019 Jan; 185():154-163. PubMed ID: 30315908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.