BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 26363605)

  • 1. Suspect screening of large numbers of emerging contaminants in environmental waters using artificial neural networks for chromatographic retention time prediction and high resolution mass spectrometry data analysis.
    Bade R; Bijlsma L; Miller TH; Barron LP; Sancho JV; Hernández F
    Sci Total Environ; 2015 Dec; 538():934-41. PubMed ID: 26363605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient liquid chromatographic retention time prediction for suspect screening applications: A critical assessment of a generalised artificial neural network-based approach across 10 multi-residue reversed-phase analytical methods.
    Barron LP; McEneff GL
    Talanta; 2016 Jan; 147():261-70. PubMed ID: 26592605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry.
    Mollerup CB; Mardal M; Dalsgaard PW; Linnet K; Barron LP
    J Chromatogr A; 2018 Mar; 1542():82-88. PubMed ID: 29472071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network modelling of pharmaceutical residue retention times in wastewater extracts using gradient liquid chromatography-high resolution mass spectrometry data.
    Munro K; Miller TH; Martins CP; Edge AM; Cowan DA; Barron LP
    J Chromatogr A; 2015 May; 1396():34-44. PubMed ID: 25892634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants.
    Aalizadeh R; Nika MC; Thomaidis NS
    J Hazard Mater; 2019 Feb; 363():277-285. PubMed ID: 30312924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suspect screening and target quantification of multi-class pharmaceuticals in surface water based on large-volume injection liquid chromatography and time-of-flight mass spectrometry.
    Vergeynst L; Van Langenhove H; Joos P; Demeestere K
    Anal Bioanal Chem; 2014 Apr; 406(11):2533-47. PubMed ID: 24633561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical evaluation of a simple retention time predictor based on LogKow as a complementary tool in the identification of emerging contaminants in water.
    Bade R; Bijlsma L; Sancho JV; Hernández F
    Talanta; 2015 Jul; 139():143-9. PubMed ID: 25882420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography-quadrupole-time-of-flight mass spectrometry with an accurate-mass database.
    Gómez MJ; Gómez-Ramos MM; Malato O; Mezcua M; Férnandez-Alba AR
    J Chromatogr A; 2010 Nov; 1217(45):7038-54. PubMed ID: 20926086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry.
    Kern S; Fenner K; Singer HP; Schwarzenbach RP; Hollender J
    Environ Sci Technol; 2009 Sep; 43(18):7039-46. PubMed ID: 19806739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Searching for pharmaceutically active products and metabolites in environmental waters of Peru by HRMS-based screening: Proposal for future monitoring and environmental risk assessment.
    Fabregat-Safont D; Botero-Coy AM; Nieto-Juárez JI; Torres-Palma RA; Hernández F
    Chemosphere; 2023 Oct; 337():139375. PubMed ID: 37391080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry.
    Chiaia-Hernandez AC; Krauss M; Hollender J
    Environ Sci Technol; 2013 Jan; 47(2):976-86. PubMed ID: 23215447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry.
    Du B; Lofton JM; Peter KT; Gipe AD; James CA; McIntyre JK; Scholz NL; Baker JE; Kolodziej EP
    Environ Sci Process Impacts; 2017 Sep; 19(9):1185-1196. PubMed ID: 28825428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Qualitative validation of a liquid chromatography-quadrupole-time of flight mass spectrometry screening method for organic pollutants in waters.
    Diaz R; Ibáñez M; Sancho JV; Hernández F
    J Chromatogr A; 2013 Feb; 1276():47-57. PubMed ID: 23313303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution time-of-flight mass spectrometry for suspect screening and target quantification of pharmaceuticals in river water.
    Vergeynst L; Van Langenhove H; Joos P; Demeestere K
    Commun Agric Appl Biol Sci; 2013; 78(1):9-14. PubMed ID: 23875290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon.
    Picó Y; Barceló D
    Anal Bioanal Chem; 2015 Aug; 407(21):6257-73. PubMed ID: 25990630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a liquid chromatography-quadrupole-time-of-flight-mass spectrometry based method for the targeted and suspect screening of contaminants in the pearl oyster Pinctada imbricata radiata.
    Liu L; Aljathelah NM; Hassan H; Leitão A; Bayen S
    Environ Pollut; 2019 Oct; 253():841-849. PubMed ID: 31349193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of chromatographic retention time in high-resolution anti-doping screening data using artificial neural networks.
    Miller TH; Musenga A; Cowan DA; Barron LP
    Anal Chem; 2013 Nov; 85(21):10330-7. PubMed ID: 24053138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental forensics in groundwater coupling passive sampling and high resolution mass spectrometry for screening.
    Soulier C; Coureau C; Togola A
    Sci Total Environ; 2016 Sep; 563-564():845-54. PubMed ID: 26803221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS.
    Sjerps RMA; Vughs D; van Leerdam JA; Ter Laak TL; van Wezel AP
    Water Res; 2016 Apr; 93():254-264. PubMed ID: 26921851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.