These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26363719)
1. Sweet potato cysteine proteases SPAE and SPCP2 participate in sporamin degradation during storage root sprouting. Chen HJ; Liang SH; Huang GJ; Lin YH J Plant Physiol; 2015 Aug; 186-187():39-49. PubMed ID: 26363719 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning and characterization of a cDNA encoding asparaginyl endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves. Chen HJ; Hou WC; Liu JS; Yang CY; Huang DJ; Lin YH J Exp Bot; 2004 Apr; 55(398):825-35. PubMed ID: 14990624 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. Chen HJ; Huang DJ; Hou WC; Liu JS; Lin YH J Plant Physiol; 2006 Jul; 163(8):863-76. PubMed ID: 16777534 [TBL] [Abstract][Full Text] [Related]
4. Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Chen HJ; Su CT; Lin CH; Huang GJ; Lin YH J Plant Physiol; 2010 Jul; 167(10):838-47. PubMed ID: 20129700 [TBL] [Abstract][Full Text] [Related]
5. Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Yeh KW; Chen JC; Lin MI; Chen YM; Lin CY Plant Mol Biol; 1997 Feb; 33(3):565-70. PubMed ID: 9049277 [TBL] [Abstract][Full Text] [Related]
6. Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. Chen SP; Lin IW; Chen X; Huang YH; Chang SC; Lo HS; Lu HH; Yeh KW Plant J; 2016 May; 86(3):234-48. PubMed ID: 26996980 [TBL] [Abstract][Full Text] [Related]
7. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Cai D; Thurau T; Tian Y; Lange T; Yeh KW; Jung C Plant Mol Biol; 2003 Apr; 51(6):839-49. PubMed ID: 12777044 [TBL] [Abstract][Full Text] [Related]
8. Multiple biological functions of sporamin related to stress tolerance in sweet potato (Ipomoea batatas Lam). Senthilkumar R; Yeh KW Biotechnol Adv; 2012; 30(6):1309-17. PubMed ID: 22306516 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome Analysis Reveals Genes and Pathways Associated with Drought Tolerance of Early Stages in Sweet Potato ( Cheng P; Kong F; Han Y; Liu X; Xia J Genes (Basel); 2024 Jul; 15(7):. PubMed ID: 39062727 [TBL] [Abstract][Full Text] [Related]
10. Wound-response regulation of the sweet potato sporamin gene promoter region. Wang SJ; Lan YC; Chen SF; Chen YM; Yeh KW Plant Mol Biol; 2002 Feb; 48(3):223-31. PubMed ID: 11855724 [TBL] [Abstract][Full Text] [Related]
11. Piriformospora indica colonization increases the growth, development, and herbivory resistance of sweet potato (Ipomoea batatas L.). Li Q; Kuo YW; Lin KH; Huang W; Deng C; Yeh KW; Chen SP Plant Cell Rep; 2021 Feb; 40(2):339-350. PubMed ID: 33231729 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity. Park SC; Kim YH; Kim SH; Jeong YJ; Kim CY; Lee JS; Bae JY; Ahn MJ; Jeong JC; Lee HS; Kwak SS Physiol Plant; 2015 Apr; 153(4):525-37. PubMed ID: 25220246 [TBL] [Abstract][Full Text] [Related]
13. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.). Dong T; Zhu M; Yu J; Han R; Tang C; Xu T; Liu J; Li Z BMC Plant Biol; 2019 Apr; 19(1):136. PubMed ID: 30971210 [TBL] [Abstract][Full Text] [Related]
15. Genome-Wide Identification and Analysis of Han S; Lin Y; Meng Y; Si C Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125807 [TBL] [Abstract][Full Text] [Related]
16. Involvement of nitrogen in storage root growth and related gene expression in sweet potato (Ipomoea batatas). Yao Z; Wang Z; Fang B; Chen J; Zhang X; Luo Z; Huang L; Zou H; Yang Y Plant Biol (Stuttg); 2020 May; 22(3):376-385. PubMed ID: 31943638 [TBL] [Abstract][Full Text] [Related]
17. Molecular Characterization and Target Prediction of Candidate miRNAs Related to Abiotic Stress Responses and/or Storage Root Development in Sweet Potato. Sun L; Yang Y; Pan H; Zhu J; Zhu M; Xu T; Li Z; Dong T Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052451 [TBL] [Abstract][Full Text] [Related]
18. The sweet potato IbMYB1 gene as a potential visible marker for sweet potato intragenic vector system. Kim CY; Ahn YO; Kim SH; Kim YH; Lee HS; Catanach AS; Jacobs JM; Conner AJ; Kwak SS Physiol Plant; 2010 Jul; 139(3):229-40. PubMed ID: 20163556 [TBL] [Abstract][Full Text] [Related]
19. Identification of genes possibly related to storage root induction in sweet potato. You MK; Hur CG; Ahn YS; Suh MC; Jeong BC; Shin JS; Bae JM FEBS Lett; 2003 Feb; 536(1-3):101-5. PubMed ID: 12586346 [TBL] [Abstract][Full Text] [Related]
20. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Muramoto N; Tanaka T; Shimamura T; Mitsukawa N; Hori E; Koda K; Otani M; Hirai M; Nakamura K; Imaeda T Plant Cell Rep; 2012 Jun; 31(6):987-97. PubMed ID: 22212462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]