These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26363719)
21. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation. Kim S; Nie H; Jun B; Kim J; Lee J; Kim S; Kim E; Kim S Genes Genomics; 2020 May; 42(5):581-596. PubMed ID: 32240514 [TBL] [Abstract][Full Text] [Related]
22. Vacuolar targeting and posttranslational processing of the precursor to the sweet potato tuberous root storage protein in heterologous plant cells. Matsuoka K; Matsumoto S; Hattori T; Machida Y; Nakamura K J Biol Chem; 1990 Nov; 265(32):19750-7. PubMed ID: 2246259 [TBL] [Abstract][Full Text] [Related]
23. IbNF-YA1 is a key factor in the storage root development of sweet potato. Xue L; Wang Y; Fan Y; Jiang Z; Wei Z; Zhai H; He S; Zhang H; Yang Y; Zhao N; Gao S; Liu Q Plant J; 2024 Jun; 118(6):1991-2002. PubMed ID: 38549549 [TBL] [Abstract][Full Text] [Related]
24. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence. Chen HJ; Huang YH; Huang GJ; Huang SS; Chow TJ; Lin YH J Plant Physiol; 2015 May; 180():1-17. PubMed ID: 25886396 [TBL] [Abstract][Full Text] [Related]
25. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development. Wang H; Yang J; Zhang M; Fan W; Firon N; Pattanaik S; Yuan L; Zhang P Sci Rep; 2016 Jan; 6():18645. PubMed ID: 26727353 [TBL] [Abstract][Full Text] [Related]
26. Identification of a damage-associated molecular pattern (DAMP) receptor and its cognate peptide ligand in sweet potato (Ipomoea batatas). Lu HH; Meents AK; Fliegmann J; Hwang MJ; Suen CS; Masch D; Felix G; Mithöfer A; Yeh KW Plant Cell Environ; 2023 Aug; 46(8):2558-2574. PubMed ID: 37267124 [TBL] [Abstract][Full Text] [Related]
27. High-level expression of tuberous root storage protein genes of sweet potato in stems of plantlets grown in vitro on sucrose medium. Hattori T; Nakagawa S; Nakamura K Plant Mol Biol; 1990 Apr; 14(4):595-604. PubMed ID: 2102838 [TBL] [Abstract][Full Text] [Related]
28. 1-Methylcyclopropene (1-MCP) effects on natural disease resistance in stored sweet potato. Amoah RS; Terry LA J Sci Food Agric; 2018 Sep; 98(12):4597-4605. PubMed ID: 29508397 [TBL] [Abstract][Full Text] [Related]
30. Comparative Transcriptome Analysis Reveals the Transcriptional Alterations in Growth- and Development-Related Genes in Sweet Potato Plants Infected and Non-Infected by SPFMV, SPV2, and SPVG. Shi J; Zhao L; Yan B; Zhu Y; Ma H; Chen W; Ruan S Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813603 [TBL] [Abstract][Full Text] [Related]
31. Dynamic network biomarker analysis discovers IbNAC083 in the initiation and regulation of sweet potato root tuberization. He S; Wang H; Hao X; Wu Y; Bian X; Yin M; Zhang Y; Fan W; Dai H; Yuan L; Zhang P; Chen L Plant J; 2021 Nov; 108(3):793-813. PubMed ID: 34460981 [TBL] [Abstract][Full Text] [Related]
32. The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato. Hong YF; Liu CY; Cheng KJ; Hour AL; Chan MT; Tseng TH; Chen KY; Shaw JF; Yu SM Plant Mol Biol; 2008 Jul; 67(4):347-61. PubMed ID: 18389377 [TBL] [Abstract][Full Text] [Related]
33. Identification of candidate miRNAs related in storage root development of sweet potato by high throughput sequencing. Tang C; Han R; Zhou Z; Yang Y; Zhu M; Xu T; Wang A; Li Z; Dong T J Plant Physiol; 2020 Aug; 251():153224. PubMed ID: 32634748 [TBL] [Abstract][Full Text] [Related]
34. Proteomic approach reveals that starch degradation contributes to anthocyanin accumulation in tuberous root of purple sweet potato. Wang S; Pan D; Lv X; Song X; Qiu Z; Huang C; Huang R; Chen W J Proteomics; 2016 Jun; 143():298-305. PubMed ID: 26957144 [TBL] [Abstract][Full Text] [Related]
35. Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs. Saminathan T; Alvarado A; Lopez C; Shinde S; Gajanayake B; Abburi VL; Vajja VG; Jagadeeswaran G; Raja Reddy K; Nimmakayala P; Reddy UK Funct Integr Genomics; 2019 Jan; 19(1):171-190. PubMed ID: 30244303 [TBL] [Abstract][Full Text] [Related]
36. The assessment of yield and quality traits of sweet potato (Ipomoea batatas L.) genotypes in middle Black Sea region, Turkey. Karan YB; Şanli ÖG PLoS One; 2021; 16(9):e0257703. PubMed ID: 34543362 [TBL] [Abstract][Full Text] [Related]
38. Plastidial Phosphoglucomutase ( Wang Y; Zhang H; Li Y; Zhang Q; Liu Q; Zhai H; Zhao N; Yang Y; He S Genes (Basel); 2022 Nov; 13(12):. PubMed ID: 36553501 [TBL] [Abstract][Full Text] [Related]
39. Effect of heat treatment on quality, thermal and pasting properties of sweet potato starch during yearlong storage. Hu W; Jiang A; Jin L; Liu C; Tian M; Wang Y J Sci Food Agric; 2011 Jun; 91(8):1499-504. PubMed ID: 21445886 [TBL] [Abstract][Full Text] [Related]
40. Analysis of genes developmentally regulated during storage root formation of sweet potato. Tanaka M; Takahata Y; Nakatani M J Plant Physiol; 2005 Jan; 162(1):91-102. PubMed ID: 15700424 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]