BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 26363799)

  • 1. Completing the human genome: the progress and challenge of satellite DNA assembly.
    Miga KH
    Chromosome Res; 2015 Sep; 23(3):421-6. PubMed ID: 26363799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin.
    Plohl M; Luchetti A; Mestrović N; Mantovani B
    Gene; 2008 Feb; 409(1-2):72-82. PubMed ID: 18182173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics.
    Ahmad SF; Singchat W; Jehangir M; Suntronpong A; Panthum T; Malaivijitnond S; Srikulnath K
    Cells; 2020 Dec; 9(12):. PubMed ID: 33352976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centromere reference models for human chromosomes X and Y satellite arrays.
    Miga KH; Newton Y; Jain M; Altemose N; Willard HF; Kent WJ
    Genome Res; 2014 Apr; 24(4):697-707. PubMed ID: 24501022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centromere studies in the era of 'telomere-to-telomere' genomics.
    Miga KH
    Exp Cell Res; 2020 Sep; 394(2):112127. PubMed ID: 32504677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centromeric Satellite DNAs: Hidden Sequence Variation in the Human Population.
    Miga KH
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31072070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula.
    Kulikova O; Geurts R; Lamine M; Kim DJ; Cook DR; Leunissen J; de Jong H; Roe BA; Bisseling T
    Chromosoma; 2004 Dec; 113(6):276-83. PubMed ID: 15480726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Dynamic Structure and Rapid Evolution of Human Centromeric Satellite DNA.
    Logsdon GA; Eichler EE
    Genes (Basel); 2022 Dec; 14(1):. PubMed ID: 36672831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence, Chromatin and Evolution of Satellite DNA.
    Thakur J; Packiaraj J; Henikoff S
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33919233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Satellite DNA-mediated effects on genome regulation.
    Pezer Z; Brajković J; Feliciello I; Ugarkovć D
    Genome Dyn; 2012; 7():153-69. PubMed ID: 22759818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helitrons shaping the genomic architecture of Drosophila: enrichment of DINE-TR1 in α- and β-heterochromatin, satellite DNA emergence, and piRNA expression.
    Dias GB; Heringer P; Svartman M; Kuhn GC
    Chromosome Res; 2015 Sep; 23(3):597-613. PubMed ID: 26408292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome-Specific Centromere Sequences Provide an Estimate of the Ancestral Chromosome 2 Fusion Event in Hominin Genomes.
    Miga KH
    J Hered; 2017 Jan; 108(1):45-52. PubMed ID: 27423248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha-CENTAURI: assessing novel centromeric repeat sequence variation with long read sequencing.
    Sevim V; Bashir A; Chin CS; Miga KH
    Bioinformatics; 2016 Jul; 32(13):1921-1924. PubMed ID: 27153570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription of tandemly repetitive DNA: functional roles.
    Biscotti MA; Canapa A; Forconi M; Olmo E; Barucca M
    Chromosome Res; 2015 Sep; 23(3):463-77. PubMed ID: 26403245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human (Homo sapiens) and chimpanzee (Pan troglodytes) share similar ancestral centromeric alpha satellite DNA sequences but other fractions of heterochromatin differ considerably.
    Luke S; Verma RS
    Am J Phys Anthropol; 1995 Jan; 96(1):63-71. PubMed ID: 7726296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A telomere-like satellite (GGGTCAT)n comprises 4% of genomic DNA of Drosophila hydei and is located mainly in centromeric heterochromatin of all large acrocentric autosomes.
    Burgtoft C; Bünemann H
    Gene; 1993 Dec; 137(2):287-91. PubMed ID: 8299961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic sequence and transcriptional profile of the boundary between pericentromeric satellites and genes on human chromosome arm 10q.
    Guy J; Spalluto C; McMurray A; Hearn T; Crosier M; Viggiano L; Miolla V; Archidiacono N; Rocchi M; Scott C; Lee PA; Sulston J; Rogers J; Bentley D; Jackson MS
    Hum Mol Genet; 2000 Aug; 9(13):2029-42. PubMed ID: 10942432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the centromeric regions of the human genome assembly.
    Rudd MK; Willard HF
    Trends Genet; 2004 Nov; 20(11):529-33. PubMed ID: 15475110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome organization of major tandem repeats and their specificity for heterochromatin of macro- and microchromosomes in Japanese quail.
    Kulak M; Komissarov A; Fillon V; Tsukanova K; Saifitdinova A; Galkina S
    Genome; 2022 Jul; 65(7):391-403. PubMed ID: 35776982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.