BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 26363803)

  • 1. The relationship between COPD and lung cancer.
    Durham AL; Adcock IM
    Lung Cancer; 2015 Nov; 90(2):121-7. PubMed ID: 26363803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic obstructive pulmonary disease and lung cancer: new molecular insights.
    Adcock IM; Caramori G; Barnes PJ
    Respiration; 2011; 81(4):265-84. PubMed ID: 21430413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA repair as an emerging target for COPD-lung cancer overlap.
    Sears CR
    Respir Investig; 2019 Mar; 57(2):111-121. PubMed ID: 30630751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular links between COPD and lung cancer: new targets for drug discovery?
    Caramori G; Ruggeri P; Mumby S; Ieni A; Lo Bello F; Chimankar V; Donovan C; Andò F; Nucera F; Coppolino I; Tuccari G; Hansbro PM; Adcock IM
    Expert Opin Ther Targets; 2019 Jun; 23(6):539-553. PubMed ID: 31079559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer.
    Caramori G; Adcock IM; Casolari P; Ito K; Jazrawi E; Tsaprouni L; Villetti G; Civelli M; Carnini C; Chung KF; Barnes PJ; Papi A
    Thorax; 2011 Jun; 66(6):521-7. PubMed ID: 21460372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative DNA damage and somatic mutations: a link to the molecular pathogenesis of chronic inflammatory airway diseases.
    Tzortzaki EG; Dimakou K; Neofytou E; Tsikritsaki K; Samara K; Avgousti M; Amargianitakis V; Gousiou A; Menikou S; Siafakas NM
    Chest; 2012 May; 141(5):1243-1250. PubMed ID: 22116800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased DNA damage in patients with chronic obstructive pulmonary disease who had once smoked or been exposed to biomass.
    Ceylan E; Kocyigit A; Gencer M; Aksoy N; Selek S
    Respir Med; 2006 Jul; 100(7):1270-6. PubMed ID: 16307872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities.
    Eapen MS; Hansbro PM; Larsson-Callerfelt AK; Jolly MK; Myers S; Sharma P; Jones B; Rahman MA; Markos J; Chia C; Larby J; Haug G; Hardikar A; Weber HC; Mabeza G; Cavalheri V; Khor YH; McDonald CF; Sohal SS
    Drugs; 2018 Nov; 78(16):1717-1740. PubMed ID: 30392114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of genetic dependences between lung cancer and chronic obstructive pulmonary disease.
    Grudny J; Kołakowski J; Kruszewski M; Szopiński J; Sliwiński P; Wiatr E; Winek J; Załęska J; Zych J; Roszkowski-Śliż K
    Pneumonol Alergol Pol; 2013; 81(4):308-18. PubMed ID: 23744166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common pathogenic mechanisms and pathways in the development of COPD and lung cancer.
    Yang IA; Relan V; Wright CM; Davidson MR; Sriram KB; Savarimuthu Francis SM; Clarke BE; Duhig EE; Bowman RV; Fong KM
    Expert Opin Ther Targets; 2011 Apr; 15(4):439-56. PubMed ID: 21284573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA damage and antioxidant capacity in COPD patients with and without lung cancer.
    Dos Santos CF; Braz MG; de Arruda NM; Caram L; Nogueira DL; Tanni SE; de Godoy I; Ferrari R
    PLoS One; 2022; 17(11):e0275873. PubMed ID: 36327269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung cancer - a comorbidity in chronic obstructive pulmonary disease.
    Roca M; Roca IC; Mihăescu T
    Rev Med Chir Soc Med Nat Iasi; 2012; 116(4):1055-62. PubMed ID: 23700888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic Obstructive Pulmonary Disease-Related Non-Small-Cell Lung Cancer Exhibits a Low Prevalence of EGFR and ALK Driver Mutations.
    Lim JU; Yeo CD; Rhee CK; Kim YH; Park CK; Kim JS; Kim JW; Lee SH; Kim SJ; Yoon HK; Kim TJ; Lee KY
    PLoS One; 2015; 10(11):e0142306. PubMed ID: 26555338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The genetics of chronic obstructive pulmonary disease].
    Arinir U; Hoffjan S; Knoop H; Schultze-Werninghaus G; Epplen JT; Rohde G
    Pneumologie; 2009 Jan; 63(1):41-8. PubMed ID: 19137504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD.
    Yao H; Rahman I
    Am J Physiol Lung Cell Mol Physiol; 2012 Oct; 303(7):L557-66. PubMed ID: 22842217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD.
    Sundar IK; Yin Q; Baier BS; Yan L; Mazur W; Li D; Susiarjo M; Rahman I
    Clin Epigenetics; 2017; 9():38. PubMed ID: 28416970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Oxidative stress and genetic polymorphism in COPD].
    Dalsgarô OJ; Vestbo J
    Ugeskr Laeger; 2002 Aug; 164(35):4056-61. PubMed ID: 12236229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD.
    Aoshiba K; Tsuji T; Yamaguchi K; Itoh M; Nakamura H
    Eur Respir J; 2013 Dec; 42(6):1689-95. PubMed ID: 23397294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic predisposition to chronic obstructive pulmonary disease and/or lung cancer: important considerations when evaluating risk.
    El-Zein RA; Young RP; Hopkins RJ; Etzel CJ
    Cancer Prev Res (Phila); 2012 Apr; 5(4):522-7. PubMed ID: 22491518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanism of lung cancer and chronic obstructive pulmonary disease].
    Li T; He X; Chen Y
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2017 Oct; 42(10):1212-1216. PubMed ID: 29093255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.