BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26363891)

  • 1. The network of molecular chaperones: insights in the cellular proteostasis machinery.
    Ostankovitch M; Buchner J
    J Mol Biol; 2015 Sep; 427(18):2899-903. PubMed ID: 26363891
    [No Abstract]   [Full Text] [Related]  

  • 2. A novel mechanism for small heat shock proteins to function as molecular chaperones.
    Zhang K; Ezemaduka AN; Wang Z; Hu H; Shi X; Liu C; Lu X; Fu X; Chang Z; Yin CC
    Sci Rep; 2015 Mar; 5():8811. PubMed ID: 25744691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network.
    Reinle K; Mogk A; Bukau B
    J Mol Biol; 2022 Jan; 434(1):167157. PubMed ID: 34271010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Chemical Biology of Molecular Chaperones--Implications for Modulation of Proteostasis.
    Brandvold KR; Morimoto RI
    J Mol Biol; 2015 Sep; 427(18):2931-47. PubMed ID: 26003923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible nets of malleable guardians: intrinsically disordered chaperones in neurodegenerative diseases.
    Uversky VN
    Chem Rev; 2011 Feb; 111(2):1134-66. PubMed ID: 21086986
    [No Abstract]   [Full Text] [Related]  

  • 6. Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer.
    Hilario E; Martin FJ; Bertolini MC; Fan L
    J Mol Biol; 2011 Apr; 408(1):74-86. PubMed ID: 21315085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature's molecular sponges: small heat shock proteins grow into their chaperone roles.
    Eyles SJ; Gierasch LM
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2727-8. PubMed ID: 20133678
    [No Abstract]   [Full Text] [Related]  

  • 8. In vivo aspects of protein folding and quality control.
    Balchin D; Hayer-Hartl M; Hartl FU
    Science; 2016 Jul; 353(6294):aac4354. PubMed ID: 27365453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some like it hot: the structure and function of small heat-shock proteins.
    Haslbeck M; Franzmann T; Weinfurtner D; Buchner J
    Nat Struct Mol Biol; 2005 Oct; 12(10):842-6. PubMed ID: 16205709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regions outside the alpha-crystallin domain of the small heat shock protein Hsp26 are required for its dimerization.
    Chen J; Feige MJ; Franzmann TM; Bepperling A; Buchner J
    J Mol Biol; 2010 Apr; 398(1):122-31. PubMed ID: 20171228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple nanocages of a cyanophage small heat shock protein with icosahedral and octahedral symmetries.
    Biswas S; Garg P; Dutta S; Suguna K
    Sci Rep; 2021 Oct; 11(1):21023. PubMed ID: 34697325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The small heat-shock protein αB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin.
    Kulig M; Ecroyd H
    Biochem J; 2012 Dec; 448(3):343-52. PubMed ID: 23005341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions.
    Basha E; O'Neill H; Vierling E
    Trends Biochem Sci; 2012 Mar; 37(3):106-17. PubMed ID: 22177323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases.
    Tedesco B; Ferrari V; Cozzi M; Chierichetti M; Casarotto E; Pramaggiore P; Mina F; Galbiati M; Rusmini P; Crippa V; Cristofani R; Poletti A
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus.
    Laksanalamai P; Pavlov AR; Slesarev AI; Robb FT
    Biotechnol Bioeng; 2006 Jan; 93(1):1-5. PubMed ID: 16299772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular chaperone functions in protein folding and proteostasis.
    Kim YE; Hipp MS; Bracher A; Hayer-Hartl M; Hartl FU
    Annu Rev Biochem; 2013; 82():323-55. PubMed ID: 23746257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-molecule modulation of cellular chaperones to treat protein misfolding disorders.
    Sloan LA; Fillmore MC; Churcher I
    Curr Opin Drug Discov Devel; 2009 Sep; 12(5):666-81. PubMed ID: 19736625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and biophysical characterization of small heat shock proteins from sugarcane. Involvement of a specific region located at the N-terminus with substrate specificity.
    Tiroli AO; Ramos CH
    Int J Biochem Cell Biol; 2007; 39(4):818-31. PubMed ID: 17336576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ["Actual-ideal" discrepancy in protein folding: protein aggregation and chaperones].
    Taguchi H
    Seikagaku; 2015 Apr; 87(2):194-204. PubMed ID: 26571576
    [No Abstract]   [Full Text] [Related]  

  • 20. Chemical Biology Framework to Illuminate Proteostasis.
    Sebastian RM; Shoulders MD
    Annu Rev Biochem; 2020 Jun; 89():529-555. PubMed ID: 32097570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.