These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26364117)

  • 1. An Overview of Proteomics Tools for Understanding Plant Defense Against Pathogens.
    Grandellis C; Vranych CV; Piazza A; Garavaglia BS; Gottig N; Ottado J
    Curr Issues Mol Biol; 2016; 19():129-36. PubMed ID: 26364117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Omics Approaches for the Engineering of Pathogen Resistant Plants.
    Gomez-Casati DF; Pagani MA; Busi MV; Bhadauria V
    Curr Issues Mol Biol; 2016; 19():89-98. PubMed ID: 26363625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling plant responses to bacterial pathogens through proteomics.
    Zimaro T; Gottig N; Garavaglia BS; Gehring C; Ottado J
    J Biomed Biotechnol; 2011; 2011():354801. PubMed ID: 22131803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Status of Proteomic Studies on Defense Responses in Rice.
    Chen X; Bhadauria V; Ma B
    Curr Issues Mol Biol; 2016; 19():7-12. PubMed ID: 26364119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNAseq and Proteomics for Analysing Complex Oomycete Plant Interactions.
    Burra DD; Vetukuri RR; Resjö S; Grenville-Briggs LJ; Andreasson E
    Curr Issues Mol Biol; 2016; 19():73-88. PubMed ID: 26364238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance.
    Gough C; Sadanandom A
    Biomolecules; 2021 Jul; 11(8):. PubMed ID: 34439788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic dissection of plant responses to various pathogens.
    Fang X; Chen J; Dai L; Ma H; Zhang H; Yang J; Wang F; Yan C
    Proteomics; 2015 May; 15(9):1525-43. PubMed ID: 25641875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of proteomics to investigate stress-induced proteins for improvement in crop protection.
    Afroz A; Ali GM; Mir A; Komatsu S
    Plant Cell Rep; 2011 May; 30(5):745-63. PubMed ID: 21287176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in functional proteomics to study plant-pathogen interactions.
    Elmore JM; Griffin BD; Walley JW
    Curr Opin Plant Biol; 2021 Oct; 63():102061. PubMed ID: 34102449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plants versus fungi and oomycetes: pathogenesis, defense and counter-defense in the proteomics era.
    El Hadrami A; El-Bebany AF; Yao Z; Adam LR; El Hadrami I; Daayf F
    Int J Mol Sci; 2012; 13(6):7237-7259. PubMed ID: 22837691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering plant-microbe crosstalk through proteomics studies.
    Jain A; Singh HB; Das S
    Microbiol Res; 2021 Jan; 242():126590. PubMed ID: 33022544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omics Approach to Identify Factors Involved in Brassica Disease Resistance.
    Francisco M; Soengas P; Velasco P; Bhadauria V; Cartea ME; Rodríguez VM
    Curr Issues Mol Biol; 2016; 19():31-42. PubMed ID: 26363709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant Proteomics and Peptidomics in Host-Pathogen Interactions: The Weapons Used by Each Side.
    Silva FAC; de Sousa Oliveira M; de Souza JM; Martins PGS; Pestana-Calsa MC; Junior TC
    Curr Protein Pept Sci; 2017; 18(4):400-410. PubMed ID: 27455975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iTRAQ proteomics reveals the regulatory response to Magnaporthe oryzae in durable resistant vs. susceptible rice genotypes.
    Ma Z; Wang L; Zhao M; Gu S; Wang C; Zhao J; Tang Z; Gao H; Zhang L; Fu L; Yin Y; He N; Zheng W; Xu Z
    PLoS One; 2020; 15(1):e0227470. PubMed ID: 31923921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wild Help for Enhancing Genetic Resistance in Lentil Against Fungal Diseases.
    Bhadauria V; Wong MM; Bett KE; Banniza S
    Curr Issues Mol Biol; 2016; 19():3-6. PubMed ID: 26363611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular matrix-associated proteome changes during non-host resistance in citrus-Xanthomonas interactions.
    Swaroopa Rani T; Podile AR
    Physiol Plant; 2014 Apr; 150(4):565-79. PubMed ID: 24117905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The early response during the interaction of fungal phytopathogen and host plant.
    Shen Y; Liu N; Li C; Wang X; Xu X; Chen W; Xing G; Zheng W
    Open Biol; 2017 May; 7(5):. PubMed ID: 28469008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Emerging Role of Long Non-Coding RNAs in Plant Defense Against Fungal Stress.
    Zhang H; Guo H; Hu W; Ji W
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32290420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-translational regulation of plant immunity.
    Withers J; Dong X
    Curr Opin Plant Biol; 2017 Aug; 38():124-132. PubMed ID: 28538164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic and molecular basis of plant resistance to pathogens.
    Zhang Y; Lubberstedt T; Xu M
    J Genet Genomics; 2013 Jan; 40(1):23-35. PubMed ID: 23357342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.