These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 26364294)
1. Highly Potent Extracts from Pea (Pisum sativum) and Maize (Zea mays) Roots Can Be Used to Induce Quiescence in Entomopathogenic Nematodes. Jaffuel G; Hiltpold I; Turlings TC J Chem Ecol; 2015 Sep; 41(9):793-800. PubMed ID: 26364294 [TBL] [Abstract][Full Text] [Related]
2. The dual effects of root-cap exudates on nematodes: from quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes. Hiltpold I; Jaffuel G; Turlings TC J Exp Bot; 2015 Feb; 66(2):603-11. PubMed ID: 25165149 [TBL] [Abstract][Full Text] [Related]
3. An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds. Laznik Z; Trdan S Exp Parasitol; 2013 Jul; 134(3):349-55. PubMed ID: 23562713 [TBL] [Abstract][Full Text] [Related]
4. The role of root architecture in foraging behavior of entomopathogenic nematodes. Demarta L; Hibbard BE; Bohn MO; Hiltpold I J Invertebr Pathol; 2014 Oct; 122():32-9. PubMed ID: 25149039 [TBL] [Abstract][Full Text] [Related]
5. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
6. The effect of day of emergence from the insect cadaver on the behavior and environmental tolerances of infective juveniles of the entomopathogenic nematode Heterorhabditis megidis (strain UK211). O'Leary SA; Stack CM; Chubb MA; Burnell AM J Parasitol; 1998 Aug; 84(4):665-72. PubMed ID: 9714191 [TBL] [Abstract][Full Text] [Related]
7. Entomopathogenic nematodes, root weevil larvae, and dynamic interactions among soil texture, plant growth, herbivory, and predation. El-Borai FE; Stuart RJ; Campos-Herrera R; Pathak E; Duncan LW J Invertebr Pathol; 2012 Jan; 109(1):134-42. PubMed ID: 22056274 [TBL] [Abstract][Full Text] [Related]
8. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. Hiltpold I; Baroni M; Toepfer S; Kuhlmann U; Turlings TC J Exp Biol; 2010 Jul; 213(Pt 14):2417-23. PubMed ID: 20581271 [TBL] [Abstract][Full Text] [Related]
9. Study on host-seeking behavior and chemotaxis of entomopathogenic nematodes using Pluronic F-127 gel. Li C; Zhou X; Lewis EE; Yu Y; Wang C J Invertebr Pathol; 2019 Feb; 161():54-60. PubMed ID: 30707919 [TBL] [Abstract][Full Text] [Related]
10. Predation of entomopathogenic nematodes by Sancassania sp. (Acari: Acaridae). Karagoz M; Gulcu B; Cakmak I; Kaya HK; Hazir S Exp Appl Acarol; 2007; 43(2):85-95. PubMed ID: 17924198 [TBL] [Abstract][Full Text] [Related]
12. Scavenging behavior and interspecific competition decrease offspring fitness of the entomopathogenic nematode Steinernema feltiae. Blanco-Pérez R; Bueno-Pallero FÁ; Vicente-Díez I; Marco-Mancebón VS; Pérez-Moreno I; Campos-Herrera R J Invertebr Pathol; 2019 Jun; 164():5-15. PubMed ID: 30974088 [TBL] [Abstract][Full Text] [Related]
13. Effects of Paenibacillus nematophilus on the entomopathogenic nematode Heterorhabditis megidis. Enright MR; Griffin CT J Invertebr Pathol; 2005 Jan; 88(1):40-8. PubMed ID: 15707868 [TBL] [Abstract][Full Text] [Related]
14. Bioturbation by endogeic earthworms facilitates entomopathogenic nematode movement toward herbivore-damaged maize roots. Fattore S; Xiao Z; Godschalx AL; Röder G; Turlings TCJ; Le Bayon RC; Rasmann S Sci Rep; 2020 Dec; 10(1):21316. PubMed ID: 33277609 [TBL] [Abstract][Full Text] [Related]
15. Pheromone extracts act as boosters for entomopathogenic nematodes efficacy. Oliveira-Hofman C; Kaplan F; Stevens G; Lewis E; Wu S; Alborn HT; Perret-Gentil A; Shapiro-Ilan DI J Invertebr Pathol; 2019 Jun; 164():38-42. PubMed ID: 31034842 [TBL] [Abstract][Full Text] [Related]
16. Root response in Pisum sativum and Zea mays under fluoranthene stress: morphological and anatomical traits. Kummerová M; Zezulka Š; Babula P; Váňová L Chemosphere; 2013 Jan; 90(2):665-73. PubMed ID: 23072784 [TBL] [Abstract][Full Text] [Related]
17. Unraveling the intraguild competition between Oscheius spp. nematodes and entomopathogenic nematodes: Implications for their natural distribution in Swiss agricultural soils. Campos-Herrera R; Půža V; Jaffuel G; Blanco-Pérez R; Čepulytė-Rakauskienė R; Turlings TCJ J Invertebr Pathol; 2015 Nov; 132():216-227. PubMed ID: 26519008 [TBL] [Abstract][Full Text] [Related]
18. Antagonistic potential of Moroccan entomopathogenic nematodes against root-knot nematodes, Meloidogyne javanica on tomato under greenhouse conditions. El Aimani A; Houari A; Laasli SE; Mentag R; Iraqi D; Diria G; Khayi S; Lahlali R; Dababat AA; Mokrini F Sci Rep; 2022 Feb; 12(1):2915. PubMed ID: 35190634 [TBL] [Abstract][Full Text] [Related]
19. Directional movement of entomopathogenic nematodes in response to electrical field: effects of species, magnitude of voltage, and infective juvenile age. Shapiro-Ilan DI; Lewis EE; Campbell JF; Kim-Shapiro DB J Invertebr Pathol; 2012 Jan; 109(1):34-40. PubMed ID: 21945052 [TBL] [Abstract][Full Text] [Related]
20. Biocontrol potential of entomopathogenic nematodes against the grey maize weevil Tanymecus dilaticollis (Coleoptera: Curculionidae) adults. Toshova TB; Velchev DI; Pilarska DK; Todorov IA; Esteves I; Barth M; Takov DI Biol Futur; 2024 Jun; 75(2):219-233. PubMed ID: 38416361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]