These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 26364512)

  • 41. The multilingual matrix test: Principles, applications, and comparison across languages: A review.
    Kollmeier B; Warzybok A; Hochmuth S; Zokoll MA; Uslar V; Brand T; Wagener KC
    Int J Audiol; 2015; 54 Suppl 2():3-16. PubMed ID: 26383182
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A beamformer post-filter for cochlear implant noise reduction.
    Hersbach AA; Grayden DB; Fallon JB; McDermott HJ
    J Acoust Soc Am; 2013 Apr; 133(4):2412-20. PubMed ID: 23556606
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overlapping frequency coverage and simulated spatial cue effects on bimodal (electrical and acoustical) sentence recognition in noise.
    Green T; Faulkner A; Rosen S
    J Acoust Soc Am; 2014 Feb; 135(2):851-61. PubMed ID: 25234893
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improving speech perception in noise with current focusing in cochlear implant users.
    Srinivasan AG; Padilla M; Shannon RV; Landsberger DM
    Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants.
    Zhou N; Pfingst BE
    J Acoust Soc Am; 2012 Aug; 132(2):994-1008. PubMed ID: 22894220
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant.
    Dorman MF; Cook S; Spahr A; Zhang T; Loiselle L; Schramm D; Whittingham J; Gifford R
    Hear Res; 2015 Apr; 322():107-11. PubMed ID: 25285624
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The digits-in-noise test: assessing auditory speech recognition abilities in noise.
    Smits C; Theo Goverts S; Festen JM
    J Acoust Soc Am; 2013 Mar; 133(3):1693-706. PubMed ID: 23464039
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of speech rate for Italian-speaking cochlear implant users: insights for everyday speech perception.
    Dincer D'Alessandro H; Boyle PJ; Ballantyne D; De Vincentiis M; Mancini P
    Int J Audiol; 2018 Nov; 57(11):851-857. PubMed ID: 30178699
    [TBL] [Abstract][Full Text] [Related]  

  • 49. International Collegium of Rehabilitative Audiology (ICRA) recommendations for the construction of multilingual speech tests. ICRA Working Group on Multilingual Speech Tests.
    Akeroyd MA; Arlinger S; Bentler RA; Boothroyd A; Dillier N; Dreschler WA; Gagné JP; Lutman M; Wouters J; Wong L; Kollmeier B;
    Int J Audiol; 2015; 54 Suppl 2():17-22. PubMed ID: 25922886
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterizing the Speech Reception Threshold in hearing-impaired listeners in relation to masker type and masker level.
    Rhebergen KS; Pool RE; Dreschler WA
    J Acoust Soc Am; 2014 Mar; 135(3):1491-505. PubMed ID: 24606285
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise.
    Mc Laughlin M; Reilly RB; Zeng FG
    J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The combined effects of reverberation and noise on speech intelligibility by cochlear implant listeners.
    Hazrati O; Loizou PC
    Int J Audiol; 2012 Jun; 51(6):437-43. PubMed ID: 22356300
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of insertion depth on spatial speech perception in noise for simulations of cochlear implants and single-sided deafness.
    Zhou X; Li H; Galvin JJ; Fu QJ; Yuan W
    Int J Audiol; 2017; 56(sup2):S41-S48. PubMed ID: 27367147
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The interpretation of speech reception threshold data in normal-hearing and hearing-impaired listeners: II. Fluctuating noise.
    Smits C; Festen JM
    J Acoust Soc Am; 2013 May; 133(5):3004-15. PubMed ID: 23654404
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-microphone spatial filtering improves speech reception for cochlear-implant users in reverberant conditions with multiple noise sources.
    Goldsworthy RL
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25330772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of presentation level and stimulation rate on speech perception and modulation detection for cochlear implant users.
    Brochier T; McDermott HJ; McKay CM
    J Acoust Soc Am; 2017 Jun; 141(6):4097. PubMed ID: 28618807
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Formant frequency discrimination with a fine structure sound coding strategy for cochlear implants.
    Liepins R; Kaider A; Honeder C; Auinger AB; Dahm V; Riss D; Arnoldner C
    Hear Res; 2020 Jul; 392():107970. PubMed ID: 32339775
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determining cochlear implant users' true noise tolerance: use of speech reception threshold in noise testing.
    Poissant SF; Bero EM; Busekroos L; Shao W
    Otol Neurotol; 2014 Mar; 35(3):414-20. PubMed ID: 24518402
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deactivating stimulation sites based on low-rate thresholds improves spectral ripple and speech reception thresholds in cochlear implant users.
    Zhou N
    J Acoust Soc Am; 2017 Mar; 141(3):EL243. PubMed ID: 28372106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spectro-temporal cues enhance modulation sensitivity in cochlear implant users.
    Zheng Y; EscabĂ­ M; Litovsky RY
    Hear Res; 2017 Aug; 351():45-54. PubMed ID: 28601530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.