These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26364640)

  • 1. Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae.
    Jia F; Kacira M; Ogden KL
    Sensors (Basel); 2015 Sep; 15(9):22234-48. PubMed ID: 26364640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of wavelength-selective optical light filters for enhanced microalgal growth in different algal cultivation systems.
    Michael C; Del Ninno M; Gross M; Wen Z
    Bioresour Technol; 2015 Mar; 179():473-482. PubMed ID: 25575207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stacked optical waveguide photobioreactor for high density algal cultures.
    Jung EE; Jain A; Voulis N; Doud DF; Angenent LT; Erickson D
    Bioresour Technol; 2014 Nov; 171():495-9. PubMed ID: 25219787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cultivation of Green Microalgae in Bubble Column Photobioreactors and an Assay for Neutral Lipids.
    Wang Q; Peng H; Higgins BT
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of soft sensor design for lipid estimation of microalgal photobioreactor system with experimental validation.
    Yoo SJ; Jung DH; Kim JH; Lee JM
    Bioresour Technol; 2015 Mar; 179():275-283. PubMed ID: 25545097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds.
    Huesemann MH; Van Wagenen J; Miller T; Chavis A; Hobbs S; Crowe B
    Biotechnol Bioeng; 2013 Jun; 110(6):1583-94. PubMed ID: 23280255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives.
    Glemser M; Heining M; Schmidt J; Becker A; Garbe D; Buchholz R; Brück T
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1077-1088. PubMed ID: 26590582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.
    Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH
    Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light emitting diodes (LEDs) applied to microalgal production.
    Schulze PS; Barreira LA; Pereira HG; Perales JA; Varela JC
    Trends Biotechnol; 2014 Aug; 32(8):422-30. PubMed ID: 25012573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of Microalgae Culture Systems with Applications to Control and Optimization.
    Bernard O; Mairet F; Chachuat B
    Adv Biochem Eng Biotechnol; 2016; 153():59-87. PubMed ID: 25604163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light.
    Mohsenpour SF; Willoughby N
    Bioresour Technol; 2013 Aug; 142():147-53. PubMed ID: 23735796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear predictive control for maximization of CO₂ bio-fixation by microalgae in a photobioreactor.
    Tebbani S; Lopes F; Filali R; Dumur D; Pareau D
    Bioprocess Biosyst Eng; 2014 Jan; 37(1):83-97. PubMed ID: 23515629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimensionless equations to describe microalgal growth in a planar cultivation system.
    Jeffryes C; Li J; Agathos SN
    Biotechnol Lett; 2015 Nov; 37(11):2167-71. PubMed ID: 26133489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient.
    Huang J; Li Y; Wan M; Yan Y; Feng F; Qu X; Wang J; Shen G; Li W; Fan J; Wang W
    Bioresour Technol; 2014 May; 159():8-16. PubMed ID: 24632435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space.
    Wagner I; Steinweg C; Posten C
    Biotechnol J; 2016 Aug; 11(8):1060-71. PubMed ID: 27168092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.
    Hindersin S; Leupold M; Kerner M; Hanelt D
    Bioprocess Biosyst Eng; 2013 Mar; 36(3):345-55. PubMed ID: 22847362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp.
    Ji B; Zhang W; Zhang N; Wang J; Lutzu GA; Liu T
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1369-75. PubMed ID: 24362561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of predators in industrial scale microalgae cultures with Pulsed Electric Fields.
    Rego D; Redondo LM; Geraldes V; Costa L; Navalho J; Pereira MT
    Bioelectrochemistry; 2015 Jun; 103():60-4. PubMed ID: 25220563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency.
    Barbosa MJ; Janssen M; Ham N; Tramper J; Wijffels RH
    Biotechnol Bioeng; 2003 Apr; 82(2):170-9. PubMed ID: 12584758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel suspended-solid phase photobioreactor to improve biomass production and separation of microalgae.
    Zhuang LL; Hu HY; Wu YH; Wang T; Zhang TY
    Bioresour Technol; 2014 Feb; 153():399-402. PubMed ID: 24380747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.