BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 26364685)

  • 21. Stabilization of rinderpest vaccine by modification of the lyophilization process.
    House JA; Mariner JC
    Dev Biol Stand; 1996; 87():235-44. PubMed ID: 8854023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances and further challenges in lyophilization.
    Kasper JC; Winter G; Friess W
    Eur J Pharm Biopharm; 2013 Oct; 85(2):162-9. PubMed ID: 23751601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review.
    Geidobler R; Winter G
    Eur J Pharm Biopharm; 2013 Oct; 85(2):214-22. PubMed ID: 23643793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring.
    De Beer TR; Allesø M; Goethals F; Coppens A; Heyden YV; De Diego HL; Rantanen J; Verpoort F; Vervaet C; Remon JP; Baeyens WR
    Anal Chem; 2007 Nov; 79(21):7992-8003. PubMed ID: 17896825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of freezing rates and excipients on the infectivity of a live viral vaccine during lyophilization.
    Zhai S; Hansen RK; Taylor R; Skepper JN; Sanches R; Slater NK
    Biotechnol Prog; 2004; 20(4):1113-20. PubMed ID: 15296437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.
    Fang R; Tanaka K; Mudhivarthi V; Bogner RH; Pikal MJ
    J Pharm Sci; 2018 Mar; 107(3):824-830. PubMed ID: 29074380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.
    Goshima H; Do G; Nakagawa K
    J Pharm Sci; 2016 Jun; 105(6):1920-1933. PubMed ID: 27238489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability.
    Ramos Yacasi GR; Calpena Campmany AC; Egea Gras MA; Espina García M; García López ML
    Drug Dev Ind Pharm; 2017 Apr; 43(4):637-651. PubMed ID: 28044462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Freeze-Drying of Lactic Acid Bacteria: A Stepwise Approach for Developing a Freeze-Drying Protocol Based on Physical Properties.
    Fonseca F; Girardeau A; Passot S
    Methods Mol Biol; 2021; 2180():703-719. PubMed ID: 32797444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lyophilization process design space.
    Patel SM; Pikal MJ
    J Pharm Sci; 2013 Nov; 102(11):3883-7. PubMed ID: 23946165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a fast-dissolving tablet formulation of a live attenuated enterotoxigenic E. coli vaccine candidate.
    Lal M; Priddy S; Bourgeois L; Walker R; Pebley W; Brown J; Desai J; Darsley MJ; Kristensen D; Chen D
    Vaccine; 2013 Oct; 31(42):4759-64. PubMed ID: 23965220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Freeze drying of red blood cells: the use of directional freezing and a new radio frequency lyophilization device.
    Arav A; Natan D
    Biopreserv Biobank; 2012 Aug; 10(4):386-94. PubMed ID: 24849889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2011 May; 100(5):1958-68. PubMed ID: 21374626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Next generation drying technologies for pharmaceutical applications.
    Walters RH; Bhatnagar B; Tchessalov S; Izutsu KI; Tsumoto K; Ohtake S
    J Pharm Sci; 2014 Sep; 103(9):2673-2695. PubMed ID: 24916125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Impact of Formulation Composition and Process Settings of Traditional Batch Versus Continuous Freeze-Drying On Protein Aggregation.
    Vanbillemont B; Carpenter JF; Probst C; De Beer T
    J Pharm Sci; 2020 Nov; 109(11):3308-3318. PubMed ID: 32739274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilizing formulations for inhalable powders of live-attenuated measles virus vaccine.
    Burger JL; Cape SP; Braun CS; McAdams DH; Best JA; Bhagwat P; Pathak P; Rebits LG; Sievers RE
    J Aerosol Med Pulm Drug Deliv; 2008 Mar; 21(1):25-34. PubMed ID: 18518829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of protein inactivation during freezing by minimizing pH changes using ionic cryoprotectants.
    Krausková Ľ; Procházková J; Klašková M; Filipová L; Chaloupková R; Malý S; Damborský J; Heger D
    Int J Pharm; 2016 Jul; 509(1-2):41-49. PubMed ID: 27224008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance.
    Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C
    J Pharm Sci; 2019 Apr; 108(4):1378-1395. PubMed ID: 30529167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles.
    Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B
    Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved formulation and lyophilization cycle for rBCG vaccine.
    Jin TH; Nguyen L; Qu T; Tsao E
    Vaccine; 2011 Jun; 29(29-30):4848-52. PubMed ID: 21549782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.