These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26364723)

  • 1. Modeling chromosomes: Beyond pretty pictures.
    Imakaev MV; Fudenberg G; Mirny LA
    FEBS Lett; 2015 Oct; 589(20 Pt A):3031-6. PubMed ID: 26364723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide mapping and analysis of chromosome architecture.
    Schmitt AD; Hu M; Ren B
    Nat Rev Mol Cell Biol; 2016 Dec; 17(12):743-755. PubMed ID: 27580841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4Cin: A computational pipeline for 3D genome modeling and virtual Hi-C analyses from 4C data.
    Irastorza-Azcarate I; Acemel RD; Tena JJ; Maeso I; Gómez-Skarmeta JL; Devos DP
    PLoS Comput Biol; 2018 Mar; 14(3):e1006030. PubMed ID: 29522512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
    Di Pierro M; Cheng RR; Lieberman Aiden E; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12126-12131. PubMed ID: 29087948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian inference of chromatin structure ensembles from population-averaged contact data.
    Carstens S; Nilges M; Habeck M
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7824-7830. PubMed ID: 32193349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data.
    Carstens S; Nilges M; Habeck M
    PLoS Comput Biol; 2016 Dec; 12(12):e1005292. PubMed ID: 28027298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical Review: A Hitchhiker's Guide to Chromosome Conformation Capture.
    Grob S; Cavalli G
    Methods Mol Biol; 2018; 1675():233-246. PubMed ID: 29052195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reorganization of chromosome architecture in replicative cellular senescence.
    Criscione SW; De Cecco M; Siranosian B; Zhang Y; Kreiling JA; Sedivy JM; Neretti N
    Sci Adv; 2016 Feb; 2(2):e1500882. PubMed ID: 26989773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle.
    Xie WJ; Meng L; Liu S; Zhang L; Cai X; Gao YQ
    Sci Rep; 2017 Jun; 7(1):2818. PubMed ID: 28588240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring chromosomal structural heterogeneity across multiple cell lines.
    Cheng RR; Contessoto VG; Lieberman Aiden E; Wolynes PG; Di Pierro M; Onuchic JN
    Elife; 2020 Oct; 9():. PubMed ID: 33047670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Nat Methods; 2015 Jan; 12(1):71-8. PubMed ID: 25437436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circular Chromosome Conformation Capture in Plants.
    Grob S
    Methods Mol Biol; 2017; 1610():73-92. PubMed ID: 28439858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of loops on the order of eukaryotes and prokaryotes.
    Hofmann A; Heermann DW
    FEBS Lett; 2015 Oct; 589(20 Pt A):2958-65. PubMed ID: 25912650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hitchhiker's guide to Hi-C analysis: practical guidelines.
    Lajoie BR; Dekker J; Kaplan N
    Methods; 2015 Jan; 72():65-75. PubMed ID: 25448293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data.
    Saberi S; Farré P; Cuvier O; Emberly E
    BMC Bioinformatics; 2015 May; 16():171. PubMed ID: 26001583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic modeling of chromatin folding to understand function.
    Brackey CA; Marenduzzo D; Gilbert N
    Nat Methods; 2020 Aug; 17(8):767-775. PubMed ID: 32514111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of chromosome conformation capture assays (3C-qPCR).
    Hagège H; Klous P; Braem C; Splinter E; Dekker J; Cathala G; de Laat W; Forné T
    Nat Protoc; 2007; 2(7):1722-33. PubMed ID: 17641637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Globular model of interphase chromosome and intrachromosomal exchange aberrations].
    Andreev SG; Eĭdel'man IuA
    Radiats Biol Radioecol; 1999; 39(1):10-20. PubMed ID: 10347593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolving Spatial Clusters of Genomic Regions From High-Throughput Chromatin Conformation Capture Data.
    Li X; Ma S; Wong KC
    IEEE Trans Nanobioscience; 2017 Sep; 16(6):400-407. PubMed ID: 28708563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.