BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 26364747)

  • 1. Review: in vitro microvessel models.
    Bogorad MI; DeStefano J; Karlsson J; Wong AD; Gerecht S; Searson PC
    Lab Chip; 2015 Nov; 15(22):4242-55. PubMed ID: 26364747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utility of microfluidic devices to study the platelet-endothelium interface.
    Zilberman-Rudenko J; Sylman JL; Garland KS; Puy C; Wong AD; Searson PC; McCarty OJT
    Platelets; 2017 Jul; 28(5):449-456. PubMed ID: 28358586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-engineered 3D microvessel and capillary network models for the study of vascular phenomena.
    Bogorad MI; DeStefano J; Wong AD; Searson PC
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28164421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging avidin-biotin interaction to quantify permeability property of microvessels-on-a-chip networks.
    Gao F; Sun H; Li X; He P
    Am J Physiol Heart Circ Physiol; 2022 Jan; 322(1):H71-H86. PubMed ID: 34767485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular Based Strategies for Microvascular Engineering.
    Koduru SV; Leberfinger AN; Pasic D; Forghani A; Lince S; Hayes DJ; Ozbolat IT; Ravnic DJ
    Stem Cell Rev Rep; 2019 Apr; 15(2):218-240. PubMed ID: 30739276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms.
    Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
    Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q
    Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications.
    Daniele MA; Boyd DA; Adams AA; Ligler FS
    Adv Healthc Mater; 2015 Jan; 4(1):11-28. PubMed ID: 24853649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coaxial Cell Printing of Freestanding, Perfusable, and Functional In Vitro Vascular Models for Recapitulation of Native Vascular Endothelium Pathophysiology.
    Gao G; Park JY; Kim BS; Jang J; Cho DW
    Adv Healthc Mater; 2018 Dec; 7(23):e1801102. PubMed ID: 30370670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic approaches to the study of angiogenesis and the microcirculation.
    Akbari E; Spychalski GB; Song JW
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28182312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces.
    Abhyankar VV; Wu M; Koh CY; Hatch AV
    PLoS One; 2016; 11(5):e0156341. PubMed ID: 27227828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues.
    Xie R; Zheng W; Guan L; Ai Y; Liang Q
    Small; 2020 Apr; 16(15):e1902838. PubMed ID: 31559675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Application of Microfluidic Techniques on Tissue Engineering in Orthopaedics.
    Wang L; Jiang D; Wang Q; Wang Q; Hu H; Jia W
    Curr Pharm Des; 2018; 24(45):5397-5406. PubMed ID: 30827230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials for Microfluidic Immunoassays: A Review.
    Mou L; Jiang X
    Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28322517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing a vascular endothelium array with blood components using underlying microfluidic channels.
    Genes LI; V Tolan N; Hulvey MK; Martin RS; Spence DM
    Lab Chip; 2007 Oct; 7(10):1256-9. PubMed ID: 17896007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform.
    Katt ME; Placone AL; Wong AD; Xu ZS; Searson PC
    Front Bioeng Biotechnol; 2016; 4():12. PubMed ID: 26904541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine.
    Plouffe BD; Kniazeva T; Mayer JE; Murthy SK; Sales VL
    FASEB J; 2009 Oct; 23(10):3309-14. PubMed ID: 19487310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of nature-inspired microfluidic network for perfusable tissue constructs.
    He J; Mao M; Liu Y; Shao J; Jin Z; Li D
    Adv Healthc Mater; 2013 Aug; 2(8):1108-13. PubMed ID: 23554383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.