These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26364792)

  • 1. CH4 dissociation on Ni(111): a quantum dynamics study of lattice thermal motion.
    Shen X; Zhang Z; Zhang DH
    Phys Chem Chem Phys; 2015 Oct; 17(38):25499-504. PubMed ID: 26364792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane dissociation on Ni(111): A seven-dimensional to nine-dimensional quantum dynamics study.
    Shen X; Zhang Z; Zhang DH
    J Chem Phys; 2017 Jul; 147(2):024702. PubMed ID: 28711064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane dissociation on Ni(111): A fifteen-dimensional potential energy surface using neural network method.
    Shen X; Chen J; Zhang Z; Shao K; Zhang DH
    J Chem Phys; 2015 Oct; 143(14):144701. PubMed ID: 26472389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The temperature dependence of methane dissociation on Ni(111) and Pt(111): mixed quantum-classical studies of the lattice response.
    Tiwari AK; Nave S; Jackson B
    J Chem Phys; 2010 Apr; 132(13):134702. PubMed ID: 20387949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication: Methane dissociation on Ni(111) surface: Importance of azimuth and surface impact site.
    Shen X; Zhang Z; Zhang DH
    J Chem Phys; 2016 Mar; 144(10):101101. PubMed ID: 26979673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dissociation and recombination rates of CH
    Wang W; Zhao Y
    J Chem Phys; 2017 Jul; 147(4):044703. PubMed ID: 28764359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction Rate Constants of CH4(ads) ⇌ CH3(ads) + H(ads) on Ni(111): The Effect of Lattice Motion.
    Wang W; Zhao Y
    J Phys Chem A; 2015 Dec; 119(52):12953-61. PubMed ID: 26650500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dissociative chemisorption of methane on Ni(111): the effects of molecular vibration and lattice motion.
    Jackson B; Nave S
    J Chem Phys; 2013 May; 138(17):174705. PubMed ID: 23656150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dissociative chemisorption of methane on Ni(100) and Ni(111): classical and quantum studies based on the reaction path Hamiltonian.
    Mastromatteo M; Jackson B
    J Chem Phys; 2013 Nov; 139(19):194701. PubMed ID: 24320338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociative chemisorption of methane on Ni and Pt surfaces: mode-specific chemistry and the effects of lattice motion.
    Nave S; Tiwari AK; Jackson B
    J Phys Chem A; 2014 Oct; 118(41):9615-31. PubMed ID: 25153478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane dissociation on Ni(111): the effects of lattice motion and relaxation on reactivity.
    Nave S; Jackson B
    J Chem Phys; 2007 Dec; 127(22):224702. PubMed ID: 18081409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociative chemisorption of methane on metal surfaces: tests of dynamical assumptions using quantum models and ab initio molecular dynamics.
    Jackson B; Nattino F; Kroes GJ
    J Chem Phys; 2014 Aug; 141(5):054102. PubMed ID: 25106565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociative chemisorption of methane on Pt(110)-(1×2): effects of lattice motion on reactions at step edges.
    Han D; Nave S; Jackson B
    J Phys Chem A; 2013 Sep; 117(36):8651-9. PubMed ID: 23634878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane dissociation on Ni(111) and Pt(111): energetic and dynamical studies.
    Nave S; Jackson B
    J Chem Phys; 2009 Feb; 130(5):054701. PubMed ID: 19206983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically Accurate Simulation of a Polyatomic Molecule-Metal Surface Reaction.
    Nattino F; Migliorini D; Kroes GJ; Dombrowski E; High EA; Killelea DR; Utz AL
    J Phys Chem Lett; 2016 Jul; 7(13):2402-6. PubMed ID: 27284787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction.
    Zhou Y; Fu B; Wang C; Collins MA; Zhang DH
    J Chem Phys; 2011 Feb; 134(6):064323. PubMed ID: 21322696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab Initio Molecular Dynamics Calculations versus Quantum-State-Resolved Experiments on CHD3 + Pt(111): New Insights into a Prototypical Gas-Surface Reaction.
    Nattino F; Ueta H; Chadwick H; van Reijzen ME; Beck RD; Jackson B; van Hemert MC; Kroes GJ
    J Phys Chem Lett; 2014 Apr; 5(8):1294-9. PubMed ID: 26269970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified generalized Langevin oscillator model for activated gas-surface reactions.
    Zhou X; Jiang B
    J Chem Phys; 2019 Jan; 150(2):024704. PubMed ID: 30646703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane dissociation on stepped Ni surfaces resolved by impact site, collision energy, vibrational state, and lattice distortion.
    Guo H; Jackson B
    J Chem Phys; 2019 May; 150(20):204703. PubMed ID: 31153197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane dissociation on Ni(111): a new understanding of the lattice effect.
    Tiwari AK; Nave S; Jackson B
    Phys Rev Lett; 2009 Dec; 103(25):253201. PubMed ID: 20366254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.