These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26364829)

  • 1. Removing Bacillus subtilis from fermentation broth using alumina nanoparticles.
    Mu D; Mu X; Xu Z; Du Z; Chen G
    Bioresour Technol; 2015 Dec; 197():508-11. PubMed ID: 26364829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and transcriptomic analyses reveal mechanistic insight into the adaption of marine Bacillus subtilis C01 to alumina nanoparticles.
    Mu D; Yu X; Xu Z; Du Z; Chen G
    Sci Rep; 2016 Jul; 6():29953. PubMed ID: 27440502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.
    Cho YH; Song JY; Kim KM; Kim MK; Lee IY; Kim SB; Kim HS; Han NS; Lee BH; Kim BS
    N Biotechnol; 2010 Sep; 27(4):341-6. PubMed ID: 20541632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zeta potential as a measure of polyelectrolyte flocculation and the effect of polymer dosing conditions on cell removal from fermentation broth.
    Pearson CR; Heng M; Gebert M; Glatz CE
    Biotechnol Bioeng; 2004 Jul; 87(1):54-60. PubMed ID: 15211488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic study and characterization of surfactin production by
    Rocha PM; Dos Santos Mendes AC; de Oliveira Júnior SD; de Araújo Padilha CE; de Sá Leitão ALO; da Costa Nogueira C; de Macedo GR; Dos Santos ES
    Prep Biochem Biotechnol; 2021; 51(3):300-308. PubMed ID: 32914662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medium optimization for the production of recombinant nattokinase by Bacillus subtilis using response surface methodology.
    Chen PT; Chiang CJ; Chao YP
    Biotechnol Prog; 2007; 23(6):1327-32. PubMed ID: 17914859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass recycling from a riboflavin cultivation with B. subtilis: lysis, extract production and testing as substrate in riboflavin cultivation.
    Bretz K; Ilijevic S; Grüneberg M; Becker U; Syldatk C
    Biotechnol Bioeng; 2006 Dec; 95(6):1023-31. PubMed ID: 16732593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles.
    Hu YR; Wang F; Wang SK; Liu CZ; Guo C
    Bioresour Technol; 2013 Jun; 138():387-90. PubMed ID: 23639490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of fibrinolytic enzyme production by Bacillus subtilis DC-2 in aqueous two-phase system (poly-ethylene glycol 4000 and sodium sulfate).
    Ashipala OK; He Q
    Bioresour Technol; 2008 Jul; 99(10):4112-9. PubMed ID: 17983741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of 42 Bacillus isolates for ability to ferment soybeans into dawadawa.
    Amoa-Awua WK; Terlabie NN; Sakyi-Dawson E
    Int J Food Microbiol; 2006 Feb; 106(3):343-7. PubMed ID: 16427153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of nattokinase from Bacillus subtilis natto B-12.
    Wang C; Du M; Zheng D; Kong F; Zu G; Feng Y
    J Agric Food Chem; 2009 Oct; 57(20):9722-9. PubMed ID: 19788184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broth conditions determining specific cake resistance during microfiltration of Bacillus subtilis.
    Graves K; Rozeboom G; Heng M; Glatz C
    Biotechnol Bioeng; 2006 Jun; 94(2):346-52. PubMed ID: 16572398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro fermentation studies for selection and evaluation of Bacillus strains as starter cultures for the production of okpehe, a traditional African fermented condiment.
    Oguntoyinbo FA; Sanni AI; Franz CM; Holzapfel WH
    Int J Food Microbiol; 2007 Jan; 113(2):208-18. PubMed ID: 17020788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative growth analysis of the facultative anaerobes Bacillus subtilis, Bacillus licheniformis, and Escherichia coli.
    Clements LD; Miller BS; Streips UN
    Syst Appl Microbiol; 2002 Aug; 25(2):284-6. PubMed ID: 12353884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular enzyme loss during polyelectrolyte flocculation of cells from fermentation broth.
    Pearson CR; Heng M; Gebert M; Glatz CE
    Biotechnol Bioeng; 2004 Jul; 87(1):61-8. PubMed ID: 15211489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keratinolytic activity of Bacillus subtilis AMR using human hair.
    Mazotto AM; Cedrola SM; Lins U; Rosado AS; Silva KT; Chaves JQ; Rabinovitch L; Zingali RB; Vermelho AB
    Lett Appl Microbiol; 2010 Jan; 50(1):89-96. PubMed ID: 19912524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation.
    Sini TK; Santhosh S; Mathew PT
    Carbohydr Res; 2007 Nov; 342(16):2423-9. PubMed ID: 17707781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial gageomacrolactins characterized from the fermentation of the marine-derived bacterium Bacillus subtilis under optimum growth conditions.
    Tareq FS; Kim JH; Lee MA; Lee HS; Lee JS; Lee YJ; Shin HJ
    J Agric Food Chem; 2013 Apr; 61(14):3428-34. PubMed ID: 23488669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The statistically optimized production of poly(gamma-glutamic acid) by batch fermentation of a newly isolated Bacillus subtilis RKY3.
    Jeong JH; Kim JN; Wee YJ; Ryu HW
    Bioresour Technol; 2010 Jun; 101(12):4533-9. PubMed ID: 20153177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18.
    Kuo LC; Wu RY; Lee KT
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1181-8. PubMed ID: 22350317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.