These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 26365354)
41. Transcriptome analysis of 1- and 3-year-old Panax notoginseng roots and functional characterization of saponin biosynthetic genes DS and CYP716A47-like. Li J; Ma L; Zhang S; Zuo C; Song N; Zhu S; Wu J Planta; 2019 Apr; 249(4):1229-1237. PubMed ID: 30607503 [TBL] [Abstract][Full Text] [Related]
42. Transcriptomic Analysis of Kalopanax septemlobus and Characterization of KsBAS, CYP716A94 and CYP72A397 Genes Involved in Hederagenin Saponin Biosynthesis. Han JY; Chun JH; Oh SA; Park SB; Hwang HS; Lee H; Choi YE Plant Cell Physiol; 2018 Feb; 59(2):319-330. PubMed ID: 29186583 [TBL] [Abstract][Full Text] [Related]
43. [Synthesis of triterpenoid saponins from Aesculus chinensis based on transcriptome data]. Wei YD; Xiong C; Zhang TY; Gao H; Yin QG; Yao H; Sun W; Hu ZG; Chen SL Zhongguo Zhong Yao Za Zhi; 2019 Mar; 44(6):1135-1144. PubMed ID: 30989975 [TBL] [Abstract][Full Text] [Related]
44. Transcriptomic analysis of American ginseng seeds during the dormancy release process by RNA-Seq. Qi J; Sun P; Liao D; Sun T; Zhu J; Li X PLoS One; 2015; 10(3):e0118558. PubMed ID: 25790114 [TBL] [Abstract][Full Text] [Related]
45. Transcriptome-based analysis of key functional genes in the triterpenoid saponin synthesis pathway of Platycodon grandiflorum. Wang G; Wan X; Li X; Ou J; Li G; Deng H BMC Genom Data; 2024 Sep; 25(1):83. PubMed ID: 39333877 [TBL] [Abstract][Full Text] [Related]
46. Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. Liu MH; Yang BR; Cheung WF; Yang KY; Zhou HF; Kwok JS; Liu GC; Li XF; Zhong S; Lee SM; Tsui SK BMC Genomics; 2015 Apr; 16(1):265. PubMed ID: 25886736 [TBL] [Abstract][Full Text] [Related]
47. Transcriptomic Comparison Reveals Candidate Genes for Triterpenoid Biosynthesis in Two Closely Related Wen L; Yun X; Zheng X; Xu H; Zhan R; Chen W; Xu Y; Chen Y; Zhang J Front Plant Sci; 2017; 8():634. PubMed ID: 28503180 [TBL] [Abstract][Full Text] [Related]
48. De Novo Assembly and Characterization of the Transcriptome of the Chinese Medicinal Herb, Gentiana rigescens. Zhang X; Allan AC; Li C; Wang Y; Yao Q Int J Mol Sci; 2015 May; 16(5):11550-73. PubMed ID: 26006235 [TBL] [Abstract][Full Text] [Related]
49. Functional specialization of UDP-glycosyltransferase 73P12 in licorice to produce a sweet triterpenoid saponin, glycyrrhizin. Nomura Y; Seki H; Suzuki T; Ohyama K; Mizutani M; Kaku T; Tamura K; Ono E; Horikawa M; Sudo H; Hayashi H; Saito K; Muranaka T Plant J; 2019 Sep; 99(6):1127-1143. PubMed ID: 31095780 [TBL] [Abstract][Full Text] [Related]
50. Transcriptome analysis identifies putative genes involved in triterpenoid biosynthesis in Platycodon grandiflorus. Yu H; Liu M; Yin M; Shan T; Peng H; Wang J; Chang X; Peng D; Zha L; Gui S Planta; 2021 Jul; 254(2):34. PubMed ID: 34291354 [TBL] [Abstract][Full Text] [Related]
51. Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides. Tang QY; Chen G; Song WL; Fan W; Wei KH; He SM; Zhang GH; Tang JR; Li Y; Lin Y; Yang SC Planta; 2019 Feb; 249(2):393-406. PubMed ID: 30219960 [TBL] [Abstract][Full Text] [Related]
52. De novo sequencing and analysis of the termite mushroom (Termitomyces albuminosus) transcriptome to discover putative genes involved in bioactive component biosynthesis. Yang F; Xu B; Zhao S; Li J; Yang Y; Tang X; Wang F; Peng M; Huang Z J Biosci Bioeng; 2012 Aug; 114(2):228-31. PubMed ID: 22608552 [TBL] [Abstract][Full Text] [Related]
53. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation. Wu Q; Song J; Sun Y; Suo F; Li C; Luo H; Liu Y; Li Y; Zhang X; Yao H; Li X; Hu S; Sun C Physiol Plant; 2010 Feb; 138(2):134-49. PubMed ID: 19947964 [TBL] [Abstract][Full Text] [Related]
54. Metabolome and Transcriptome Analysis Reveals the Transcriptional Regulatory Mechanism of Triterpenoid Saponin Biosynthesis in Soapberry ( Xu Y; Zhao G; Ji X; Liu J; Zhao T; Gao Y; Gao S; Hao Y; Gao Y; Wang L; Weng X; Chen Z; Jia L J Agric Food Chem; 2022 Jun; 70(23):7095-7109. PubMed ID: 35638867 [TBL] [Abstract][Full Text] [Related]
55. Biosynthesis of triterpenoid saponins in plants. Haralampidis K; Trojanowska M; Osbourn AE Adv Biochem Eng Biotechnol; 2002; 75():31-49. PubMed ID: 11783842 [TBL] [Abstract][Full Text] [Related]
56. Transcriptome Level Reveals the Triterpenoid Saponin Biosynthesis Pathway of Li Y; Zhao J; Chen H; Mao Y; Yang Y; Feng L; Mo C; Huang L; Hou D; Yu M Genes (Basel); 2022 Nov; 13(12):. PubMed ID: 36553505 [No Abstract] [Full Text] [Related]
57. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Guo X; Li Y; Li C; Luo H; Wang L; Qian J; Luo X; Xiang L; Song J; Sun C; Xu H; Yao H; Chen S Gene; 2013 Sep; 527(1):131-8. PubMed ID: 23756193 [TBL] [Abstract][Full Text] [Related]
58. Chromosome-level genome of Entada phaseoloides provides insights into genome evolution and biosynthesis of triterpenoid saponins. Lin M; Jian JB; Zhou ZQ; Chen CH; Wang W; Xiong H; Mei ZN Mol Ecol Resour; 2022 Nov; 22(8):3049-3067. PubMed ID: 35661414 [TBL] [Abstract][Full Text] [Related]
59. The chromosome-level reference genome assembly for Jiang Z; Tu L; Yang W; Zhang Y; Hu T; Ma B; Lu Y; Cui X; Gao J; Wu X; Tong Y; Zhou J; Song Y; Liu Y; Liu N; Huang L; Gao W Plant Commun; 2021 Jan; 2(1):100113. PubMed ID: 33511345 [No Abstract] [Full Text] [Related]
60. Full-Length Transcriptome Analyses of Genes Involved in Triterpenoid Saponin Biosynthesis of Su L; Li S; Qiu H; Wang H; Wang C; He C; Xu M; Zhang Z Front Genet; 2021; 12():657060. PubMed ID: 33854529 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]