BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 26365379)

  • 1. The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability.
    Dungrawala H; Rose KL; Bhat KP; Mohni KN; Glick GG; Couch FB; Cortez D
    Mol Cell; 2015 Sep; 59(6):998-1010. PubMed ID: 26365379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replisome dysfunction upon inducible TIMELESS degradation synergizes with ATR inhibition to trigger replication catastrophe.
    Patel JA; Zezelic C; Rageul J; Saldanha J; Khan A; Kim H
    Nucleic Acids Res; 2023 Jul; 51(12):6246-6263. PubMed ID: 37144518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute hydroxyurea-induced replication blockade results in replisome components disengagement from nascent DNA without causing fork collapse.
    Ercilla A; Feu S; Aranda S; Llopis A; Brynjólfsdóttir SH; Sørensen CS; Toledo LI; Agell N
    Cell Mol Life Sci; 2020 Feb; 77(4):735-749. PubMed ID: 31297568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated degradation of replisome components ensures genome stability upon replication stress in the absence of the replication fork protection complex.
    Roseaulin LC; Noguchi C; Martinez E; Ziegler MA; Toda T; Noguchi E
    PLoS Genet; 2013; 9(1):e1003213. PubMed ID: 23349636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in understanding DNA processing and protection at stalled replication forks.
    Rickman K; Smogorzewska A
    J Cell Biol; 2019 Apr; 218(4):1096-1107. PubMed ID: 30670471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A local ATR-dependent checkpoint pathway is activated by a site-specific replication fork block in human cells.
    Ahmed-Seghir S; Jalan M; Grimsley HE; Sharma A; Twayana S; Kosiyatrakul ST; Thompson C; Schildkraut CL; Powell SN
    Elife; 2023 Aug; 12():. PubMed ID: 37647215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replisome Dynamics and Their Functional Relevance upon DNA Damage through the PCNA Interactome.
    Srivastava M; Chen Z; Zhang H; Tang M; Wang C; Jung SY; Chen J
    Cell Rep; 2018 Dec; 25(13):3869-3883.e4. PubMed ID: 30590055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification of replication fork stalling/pausing sites and the interplay between RNA Pol II transcription and DNA replication progression.
    Rojas P; Wang J; Guglielmi G; Sadurnì MM; Pavlou L; Leung GHD; Rajagopal V; Spill F; Saponaro M
    Genome Biol; 2024 May; 25(1):126. PubMed ID: 38773641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replisome Proximal Protein Associations and Dynamic Proteomic Changes at Stalled Replication Forks.
    Jurkovic CM; Raisch J; Tran S; Nguyen HD; Lévesque D; Scott MS; Campos EI; Boisvert FM
    Mol Cell Proteomics; 2024 May; 23(5):100767. PubMed ID: 38615877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved detection of DNA replication fork-associated proteins.
    Rivard RS; Chang YC; Ragland RL; Thu YM; Kassab M; Mandal RS; Van Riper SK; Kulej K; Higgins L; Markowski TM; Shang D; Hedberg J; Erber L; Garcia B; Chen Y; Bielinsky AK; Brown EJ
    Cell Rep; 2024 May; 43(5):114178. PubMed ID: 38703364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RTEL1 and MCM10 overcome topological stress during vertebrate replication termination.
    Campos LV; Van Ravenstein SX; Vontalge EJ; Greer BH; Heintzman DR; Kavlashvili T; McDonald WH; Rose KL; Eichman BF; Dewar JM
    Cell Rep; 2023 Feb; 42(2):112109. PubMed ID: 36807139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaching Protein Barriers: Emerging Mechanisms of Replication Pausing in Eukaryotes.
    Shyian M; Shore D
    Front Cell Dev Biol; 2021; 9():672510. PubMed ID: 34124054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication of the Mammalian Genome by Replisomes Specific for Euchromatin and Heterochromatin.
    Zhang J; Bellani MA; Huang J; James RC; Pokharel D; Gichimu J; Gali H; Stewart G; Seidman MM
    Front Cell Dev Biol; 2021; 9():729265. PubMed ID: 34532320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RTF2 controls replication repriming and ribonucleotide excision at the replisome.
    Conti BA; Ruiz PD; Broton C; Blobel NJ; Kottemann MC; Sridhar S; Lach FP; Wiley TF; Sasi NK; Carroll T; Smogorzewska A
    Nat Commun; 2024 Mar; 15(1):1943. PubMed ID: 38431617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RTF2 controls replication repriming and ribonucleotide excision at the replisome.
    Conti BA; Ruiz PD; Broton C; Blobel NJ; Kottemann MC; Sridhar S; Lach FP; Wiley T; Sasi NK; Carroll T; Smogorzewska A
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Molecule Fluorescence Imaging of DNA Replication Stalling at Sites of Nucleoprotein Complexes.
    Whinn KS; Sharma N; van Oijen AM; Ghodke H
    Methods Mol Biol; 2024; 2694():215-234. PubMed ID: 37824007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A local ATR-dependent checkpoint pathway is activated by a site-specific replication fork block in human cells.
    Ahmed-Seghir S; Jalan M; Grimsley HE; Sharma A; Twayana S; Kosiyatrakul ST; Thompson C; Schildkraut CL; Powell SN
    bioRxiv; 2023 May; ():. PubMed ID: 36993263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for Maintaining Eukaryotic Replisome Progression in the Presence of DNA Damage.
    Guilliam TA
    Front Mol Biosci; 2021; 8():712971. PubMed ID: 34295925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of Proteins on Nascent DNA in Hypoxia and Reoxygenation Conditions.
    Olcina MM; Giaccia AJ; Hammond EM
    Adv Exp Med Biol; 2016; 899():27-40. PubMed ID: 27325260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of Long Non-coding RNAs on Replication Forks Using iROND (Isolate RNAs on Nascent DNA).
    Zhang W; Tang M; Wang L; Zheng P; Zhao B
    Bio Protoc; 2023 Nov; 13(21):e4869. PubMed ID: 37969755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.