BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

708 related articles for article (PubMed ID: 26365379)

  • 81. Ubiquitylation at Stressed Replication Forks: Mechanisms and Functions.
    Mirsanaye AS; Typas D; Mailand N
    Trends Cell Biol; 2021 Jul; 31(7):584-597. PubMed ID: 33612353
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Impediments to replication fork movement: stabilisation, reactivation and genome instability.
    Lambert S; Carr AM
    Chromosoma; 2013 Mar; 122(1-2):33-45. PubMed ID: 23446515
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The essential kinase ATR: ensuring faithful duplication of a challenging genome.
    Saldivar JC; Cortez D; Cimprich KA
    Nat Rev Mol Cell Biol; 2017 Oct; 18(10):622-636. PubMed ID: 28811666
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Cellular regulation and stability of DNA replication forks in eukaryotic cells.
    Li X; Wang L; Liu X; Zheng Z; Kong D
    DNA Repair (Amst); 2022 Dec; 120():103418. PubMed ID: 36265398
    [TBL] [Abstract][Full Text] [Related]  

  • 85. RTEL1 and MCM10 overcome topological stress during vertebrate replication termination.
    Campos LV; Van Ravenstein SX; Vontalge EJ; Greer BH; Heintzman DR; Kavlashvili T; McDonald WH; Rose KL; Eichman BF; Dewar JM
    Cell Rep; 2023 Feb; 42(2):112109. PubMed ID: 36807139
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Approaching Protein Barriers: Emerging Mechanisms of Replication Pausing in Eukaryotes.
    Shyian M; Shore D
    Front Cell Dev Biol; 2021; 9():672510. PubMed ID: 34124054
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Silencing of human DNA polymerase λ causes replication stress and is synthetically lethal with an impaired S phase checkpoint.
    Zucca E; Bertoletti F; Wimmer U; Ferrari E; Mazzini G; Khoronenkova S; Grosse N; van Loon B; Dianov G; Hübscher U; Maga G
    Nucleic Acids Res; 2013 Jan; 41(1):229-41. PubMed ID: 23118481
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Mechanisms used by cancer cells to tolerate drug-induced replication stress.
    Segeren HA; Westendorp B
    Cancer Lett; 2022 Sep; 544():215804. PubMed ID: 35750276
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Smarcal1 and Zranb3 Protect Replication Forks from Myc-Induced DNA Replication Stress.
    Puccetti MV; Adams CM; Kushinsky S; Eischen CM
    Cancer Res; 2019 Apr; 79(7):1612-1623. PubMed ID: 30610086
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Hallmarks of DNA replication stress.
    Saxena S; Zou L
    Mol Cell; 2022 Jun; 82(12):2298-2314. PubMed ID: 35714587
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Replication of the Mammalian Genome by Replisomes Specific for Euchromatin and Heterochromatin.
    Zhang J; Bellani MA; Huang J; James RC; Pokharel D; Gichimu J; Gali H; Stewart G; Seidman MM
    Front Cell Dev Biol; 2021; 9():729265. PubMed ID: 34532320
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Identification of replication fork-associated proteins in Drosophila embryos and cultured cells using iPOND coupled to quantitative mass spectrometry.
    Munden A; Wright MT; Han D; Tirgar R; Plate L; Nordman JT
    Sci Rep; 2022 Apr; 12(1):6903. PubMed ID: 35484306
    [TBL] [Abstract][Full Text] [Related]  

  • 93. RTF2 controls replication repriming and ribonucleotide excision at the replisome.
    Conti BA; Ruiz PD; Broton C; Blobel NJ; Kottemann MC; Sridhar S; Lach FP; Wiley T; Sasi NK; Carroll T; Smogorzewska A
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993543
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Single-Molecule Fluorescence Imaging of DNA Replication Stalling at Sites of Nucleoprotein Complexes.
    Whinn KS; Sharma N; van Oijen AM; Ghodke H
    Methods Mol Biol; 2024; 2694():215-234. PubMed ID: 37824007
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Topoisomerase II Is Crucial for Fork Convergence during Vertebrate Replication Termination.
    Heintzman DR; Campos LV; Byl JAW; Osheroff N; Dewar JM
    Cell Rep; 2019 Oct; 29(2):422-436.e5. PubMed ID: 31597101
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication.
    Leman AR; Noguchi E
    Genes (Basel); 2013 Mar; 4(1):1-32. PubMed ID: 23599899
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Replication Fork Barriers and Topological Barriers: Progression of DNA Replication Relies on DNA Topology Ahead of Forks.
    Schvartzman JB; Hernández P; Krimer DB
    Bioessays; 2020 May; 42(5):e1900204. PubMed ID: 32115727
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The replisome: a nanomachine or a dynamic dance of protein partners?
    Guler GD; Fanning E
    Cell Cycle; 2010 May; 9(9):1680-1. PubMed ID: 20448477
    [No Abstract]   [Full Text] [Related]  

  • 99. Functional Analysis of the Replication Fork Proteome Identifies BET Proteins as PCNA Regulators.
    Wessel SR; Mohni KN; Luzwick JW; Dungrawala H; Cortez D
    Cell Rep; 2019 Sep; 28(13):3497-3509.e4. PubMed ID: 31553917
    [TBL] [Abstract][Full Text] [Related]  

  • 100. ATR checkpoint suppression by repetitive DNA.
    Sannino V; Costanzo V
    Cell Cycle; 2016 Nov; 15(22):2993-2994. PubMed ID: 27458735
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.