BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26365461)

  • 1. Single-Fluorophore Detection in Femtoliter Droplets Generated by Flow Focusing.
    Weinmeister R; Freeman E; Eperon IC; Stuart AM; Hudson AJ
    ACS Nano; 2015 Oct; 9(10):9718-30. PubMed ID: 26365461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulation of single cells into monodisperse droplets by fluorescence-activated droplet formation on a microfluidic chip.
    Hu R; Liu P; Chen P; Wu L; Wang Y; Feng X; Liu BF
    Talanta; 2016 Jun; 153():253-9. PubMed ID: 27130116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting.
    Wu L; Chen P; Dong Y; Feng X; Liu BF
    Biomed Microdevices; 2013 Jun; 15(3):553-60. PubMed ID: 23404263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices.
    Jeong WC; Lim JM; Choi JH; Kim JH; Lee YJ; Kim SH; Lee G; Kim JD; Yi GR; Yang SM
    Lab Chip; 2012 Apr; 12(8):1446-53. PubMed ID: 22402819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets.
    Piao Y; Han DJ; Azad MR; Park M; Seo TS
    Biosens Bioelectron; 2015 Mar; 65():220-5. PubMed ID: 25461161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method to evaluate the biochemical compatibility of oil/surfactant mixtures for experiments in microdroplets.
    Kaltenbach M; Devenish SR; Hollfelder F
    Lab Chip; 2012 Oct; 12(20):4185-92. PubMed ID: 22885600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force.
    Zhang K; Liang Q; Ma S; Mu X; Hu P; Wang Y; Luo G
    Lab Chip; 2009 Oct; 9(20):2992-9. PubMed ID: 19789755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet-based microfluidics.
    Sharma S; Srisa-Art M; Scott S; Asthana A; Cass A
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active microdroplet merging by hydrodynamic flow control using a pneumatic actuator-assisted pillar structure.
    Yoon DH; Jamshaid A; Ito J; Nakahara A; Tanaka D; Akitsu T; Sekiguchi T; Shoji S
    Lab Chip; 2014 Aug; 14(16):3050-5. PubMed ID: 24961178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical calorimetry in microfluidic droplets.
    Chamoun J; Pattekar A; Afshinmanesh F; Martini J; Recht MI
    Lab Chip; 2018 May; 18(11):1581-1592. PubMed ID: 29745386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence lifetime imaging of mixing dynamics in continuous-flow microdroplet reactors.
    Srisa-Art M; DeMello AJ; Edel JB
    Phys Rev Lett; 2008 Jul; 101(1):014502. PubMed ID: 18764117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A photonic-microfluidic integrated device for reliable fluorescence detection and counting.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Electrophoresis; 2012 Nov; 33(21):3236-44. PubMed ID: 23065957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-enzyme analysis in a droplet-based micro- and nanofluidic system.
    Arayanarakool R; Shui L; Kengen SW; van den Berg A; Eijkel JC
    Lab Chip; 2013 May; 13(10):1955-62. PubMed ID: 23546540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficiency single-molecule detection within trapped aqueous microdroplets.
    Srisa-Art M; deMello AJ; Edel JB
    J Phys Chem B; 2010 Dec; 114(48):15766-72. PubMed ID: 21069980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.