BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 26365489)

  • 1. Genome-wide maps of nuclear lamina interactions in single human cells.
    Kind J; Pagie L; de Vries SS; Nahidiazar L; Dey SS; Bienko M; Zhan Y; Lajoie B; de Graaf CA; Amendola M; Fudenberg G; Imakaev M; Mirny LA; Jalink K; Dekker J; van Oudenaarden A; van Steensel B
    Cell; 2015 Sep; 163(1):134-47. PubMed ID: 26365489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell dynamics of genome-nuclear lamina interactions.
    Kind J; Pagie L; Ortabozkoyun H; Boyle S; de Vries SS; Janssen H; Amendola M; Nolen LD; Bickmore WA; van Steensel B
    Cell; 2013 Mar; 153(1):178-92. PubMed ID: 23523135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell cycle dynamics of lamina-associated DNA.
    van Schaik T; Vos M; Peric-Hupkes D; Hn Celie P; van Steensel B
    EMBO Rep; 2020 Nov; 21(11):e50636. PubMed ID: 32893442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial chromatin organization and gene regulation at the nuclear lamina.
    Guerreiro I; Kind J
    Curr Opin Genet Dev; 2019 Apr; 55():19-25. PubMed ID: 31112905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions.
    Guelen L; Pagie L; Brasset E; Meuleman W; Faza MB; Talhout W; Eussen BH; de Klein A; Wessels L; de Laat W; van Steensel B
    Nature; 2008 Jun; 453(7197):948-51. PubMed ID: 18463634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-nuclear lamina interactions: from cell populations to single cells.
    Yáñez-Cuna JO; van Steensel B
    Curr Opin Genet Dev; 2017 Apr; 43():67-72. PubMed ID: 28107752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic genome-nuclear lamina interactions: modulating roles of Lamin A and BAF.
    Kind J; van Steensel B
    Nucleus; 2014; 5(2):124-30. PubMed ID: 24717229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila.
    Ulianov SV; Doronin SA; Khrameeva EE; Kos PI; Luzhin AV; Starikov SS; Galitsyna AA; Nenasheva VV; Ilyin AA; Flyamer IM; Mikhaleva EA; Logacheva MD; Gelfand MS; Chertovich AV; Gavrilov AA; Razin SV; Shevelyov YY
    Nat Commun; 2019 Mar; 10(1):1176. PubMed ID: 30862957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local rewiring of genome-nuclear lamina interactions by transcription.
    Brueckner L; Zhao PA; van Schaik T; Leemans C; Sima J; Peric-Hupkes D; Gilbert DM; van Steensel B
    EMBO J; 2020 Mar; 39(6):e103159. PubMed ID: 32080885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lamins Organize the Global Three-Dimensional Genome from the Nuclear Periphery.
    Zheng X; Hu J; Yue S; Kristiani L; Kim M; Sauria M; Taylor J; Kim Y; Zheng Y
    Mol Cell; 2018 Sep; 71(5):802-815.e7. PubMed ID: 30201095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Nuclear Lamina as an Organizer of Chromosome Architecture.
    Shevelyov YY; Ulianov SV
    Cells; 2019 Feb; 8(2):. PubMed ID: 30744037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms and dynamics of nuclear lamina-genome interactions.
    Amendola M; van Steensel B
    Curr Opin Cell Biol; 2014 Jun; 28():61-8. PubMed ID: 24694724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome.
    van Bemmel JG; Pagie L; Braunschweig U; Brugman W; Meuleman W; Kerkhoven RM; van Steensel B
    PLoS One; 2010 Nov; 5(11):e15013. PubMed ID: 21124834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome architecture: domain organization of interphase chromosomes.
    Bickmore WA; van Steensel B
    Cell; 2013 Mar; 152(6):1270-84. PubMed ID: 23498936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin.
    Lund EG; Duband-Goulet I; Oldenburg A; Buendia B; Collas P
    Nucleus; 2015; 6(1):30-9. PubMed ID: 25602132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong interactions between highly dynamic lamina-associated domains and the nuclear envelope stabilize the 3D architecture of Drosophila interphase chromatin.
    Tolokh IS; Kinney NA; Sharakhov IV; Onufriev AV
    Epigenetics Chromatin; 2023 May; 16(1):21. PubMed ID: 37254161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell DamID to Capture Contacts Between DNA and the Nuclear Lamina in Individual Mammalian Cells.
    de Luca KL; Kind J
    Methods Mol Biol; 2021; 2157():159-172. PubMed ID: 32820403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence.
    Lenain C; de Graaf CA; Pagie L; Visser NL; de Haas M; de Vries SS; Peric-Hupkes D; van Steensel B; Peeper DS
    Genome Res; 2017 Oct; 27(10):1634-1644. PubMed ID: 28916540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High quality mapping of chromatin at or near the nuclear lamina from small numbers of cells reveals cell cycle and developmental changes of chromatin at the nuclear periphery.
    Tran JR; Zheng X; Adam SA; Goldman RD; Zheng Y
    Nucleic Acids Res; 2022 Nov; 50(20):e117. PubMed ID: 36130229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MacroH2A1 associates with nuclear lamina and maintains chromatin architecture in mouse liver cells.
    Fu Y; Lv P; Yan G; Fan H; Cheng L; Zhang F; Dang Y; Wu H; Wen B
    Sci Rep; 2015 Nov; 5():17186. PubMed ID: 26603343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.