These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 26365585)

  • 1. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose.
    Yang X; Xu M; Yang ST
    Metab Eng; 2015 Nov; 32():39-48. PubMed ID: 26365585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Clostridium cellulovorans for highly selective n-butanol production from cellulose in consolidated bioprocessing.
    Bao T; Hou W; Wu X; Lu L; Zhang X; Yang ST
    Biotechnol Bioeng; 2021 Jul; 118(7):2703-2718. PubMed ID: 33844271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach.
    Usai G; Cirrincione S; Re A; Manfredi M; Pagnani A; Pessione E; Mazzoli R
    J Proteomics; 2020 Mar; 216():103667. PubMed ID: 31982546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases.
    Bao T; Zhao J; Li J; Liu X; Yang ST
    Bioresour Technol; 2019 Aug; 285():121316. PubMed ID: 30959389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved
    Wen Z; Ledesma-Amaro R; Lin J; Jiang Y; Yang S
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30658972
    [No Abstract]   [Full Text] [Related]  

  • 6. Development of a shuttle plasmid without host restriction sites for efficient transformation and heterologous gene expression in Clostridium cellulovorans.
    Bao T; Zhao J; Zhang Q; Yang ST
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5391-5400. PubMed ID: 31115632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Engineering of
    Wen Z; Ledesma-Amaro R; Lu M; Jin M; Yang S
    ACS Synth Biol; 2020 Feb; 9(2):304-315. PubMed ID: 31940438
    [No Abstract]   [Full Text] [Related]  

  • 8. Restriction modification system analysis and development of in vivo methylation for the transformation of Clostridium cellulovorans.
    Yang X; Xu M; Yang ST
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2289-99. PubMed ID: 26590584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans.
    Wen Z; Wu M; Lin Y; Yang L; Lin J; Cen P
    Microb Cell Fact; 2014 Jul; 13(1):92. PubMed ID: 25023325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of acid re-assimilation and biosolvent production in Clostridium saccharoperbutylacetonicum through metabolic engineering for efficient biofuel production from lignocellulosic biomass.
    Wang P; Zhang J; Feng J; Wang S; Guo L; Wang Y; Lee YY; Taylor S; McDonald T; Wang Y
    Bioresour Technol; 2019 Jun; 281():217-225. PubMed ID: 30822643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum.
    Bao T; Feng J; Jiang W; Fu H; Wang J; Yang ST
    World J Microbiol Biotechnol; 2020 Aug; 36(9):138. PubMed ID: 32794091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing.
    Xin F; Dong W; Zhang W; Ma J; Jiang M
    Trends Biotechnol; 2019 Feb; 37(2):167-180. PubMed ID: 30224227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae.
    Hyeon JE; Yu KO; Suh DJ; Suh YW; Lee SE; Lee J; Han SO
    FEMS Microbiol Lett; 2010 Sep; 310(1):39-47. PubMed ID: 20637040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Clostridium for improved solvent production: recent progress and perspective.
    Cheng C; Bao T; Yang ST
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5549-5566. PubMed ID: 31139901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production.
    Cho C; Hong S; Moon HG; Jang YS; Kim D; Lee SY
    mBio; 2019 Jan; 10(1):. PubMed ID: 30670620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose.
    Cheng C; Li W; Lin M; Yang ST
    Bioresour Technol; 2019 Jul; 284():415-423. PubMed ID: 30965197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced solvent production by metabolic engineering of a twin-clostridial consortium.
    Wen Z; Minton NP; Zhang Y; Li Q; Liu J; Jiang Y; Yang S
    Metab Eng; 2017 Jan; 39():38-48. PubMed ID: 27794465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing.
    Tamaru Y; Miyake H; Kuroda K; Ueda M; Doi RH
    Environ Technol; 2010; 31(8-9):889-903. PubMed ID: 20662379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.
    Sillers R; Al-Hinai MA; Papoutsakis ET
    Biotechnol Bioeng; 2009 Jan; 102(1):38-49. PubMed ID: 18726959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
    Papanek B; Biswas R; Rydzak T; Guss AM
    Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.