BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 26365694)

  • 1. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure.
    Binzer A; Guill C; Rall BC; Brose U
    Glob Chang Biol; 2016 Jan; 22(1):220-7. PubMed ID: 26365694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact.
    de Visser SN; Freymann BP; Olff H
    J Anim Ecol; 2011 Mar; 80(2):484-94. PubMed ID: 21155772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-balanced community reorganization in response to nutrients and warming.
    McElroy DJ; O'Gorman EJ; Schneider FD; Hetjens H; Le Merrer P; Coleman RA; Emmerson M
    Glob Chang Biol; 2015 Nov; 21(11):3971-81. PubMed ID: 26147063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From projected species distribution to food-web structure under climate change.
    Albouy C; Velez L; Coll M; Colloca F; Le Loc'h F; Mouillot D; Gravel D
    Glob Chang Biol; 2014 Mar; 20(3):730-41. PubMed ID: 24214576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure.
    Sentis A; Hemptinne JL; Brodeur J
    Ecol Lett; 2014 Jul; 17(7):785-93. PubMed ID: 24751223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate warming and agricultural stressors interact to determine stream periphyton community composition.
    Piggott JJ; Salis RK; Lear G; Townsend CR; Matthaei CD
    Glob Chang Biol; 2015 Jan; 21(1):206-22. PubMed ID: 24942814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiversity maintenance in food webs with regulatory environmental feedbacks.
    Bagdassarian CK; Dunham AE; Brown CG; Rauscher D
    J Theor Biol; 2007 Apr; 245(4):705-14. PubMed ID: 17240397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-size responses alter food chain persistence across environmental gradients.
    Sentis A; Binzer A; Boukal DS
    Ecol Lett; 2017 Jul; 20(7):852-862. PubMed ID: 28544190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ecological impacts of multiple environmental stressors on coastal biofilm bacteria.
    Ferguson RMW; O'Gorman EJ; McElroy DJ; McKew BA; Coleman RA; Emmerson MC; Dumbrell AJ
    Glob Chang Biol; 2021 Jul; 27(13):3166-3178. PubMed ID: 33797829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Warming modifies trophic cascades and eutrophication in experimental freshwater communities.
    Kratina P; Greig HS; Thompson PL; Carvalho-Pereira TS; Shurin JB
    Ecology; 2012 Jun; 93(6):1421-30. PubMed ID: 22834382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological emergence of thermal clines in body size.
    Edeline E; Lacroix G; Delire C; Poulet N; Legendre S
    Glob Chang Biol; 2013 Oct; 19(10):3062-8. PubMed ID: 23780903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the consequences of species loss using size-structured biodiversity approaches.
    Brose U; Blanchard JL; Eklöf A; Galiana N; Hartvig M; R Hirt M; Kalinkat G; Nordström MC; O'Gorman EJ; Rall BC; Schneider FD; Thébault E; Jacob U
    Biol Rev Camb Philos Soc; 2017 May; 92(2):684-697. PubMed ID: 26756137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trophic redundancy reduces vulnerability to extinction cascades.
    Sanders D; Thébault E; Kehoe R; Frank van Veen FJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2419-2424. PubMed ID: 29467292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warming and oligotrophication cause shifts in freshwater phytoplankton communities.
    Verbeek L; Gall A; Hillebrand H; Striebel M
    Glob Chang Biol; 2018 Oct; 24(10):4532-4543. PubMed ID: 29856108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vulnerability of coral reef fisheries to a loss of structural complexity.
    Rogers A; Blanchard JL; Mumby PJ
    Curr Biol; 2014 May; 24(9):1000-5. PubMed ID: 24746794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive effects of body-size structure and adaptive foraging on food-web stability.
    Heckmann L; Drossel B; Brose U; Guill C
    Ecol Lett; 2012 Mar; 15(3):243-50. PubMed ID: 22276597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change in size-structured ecosystems.
    Brose U; Dunne JA; Montoya JM; Petchey OL; Schneider FD; Jacob U
    Philos Trans R Soc Lond B Biol Sci; 2012 Nov; 367(1605):2903-12. PubMed ID: 23007078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collapse and rescue of evolutionary food webs under global warming.
    Yacine Y; Allhoff KT; Weinbach A; Loeuille N
    J Anim Ecol; 2021 Mar; 90(3):710-722. PubMed ID: 33314119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.
    Cowles JM; Wragg PD; Wright AJ; Powers JS; Tilman D
    Glob Chang Biol; 2016 Feb; 22(2):741-9. PubMed ID: 26426698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual variation and interactions explain food web responses to global warming.
    Gårdmark A; Huss M
    Philos Trans R Soc Lond B Biol Sci; 2020 Dec; 375(1814):20190449. PubMed ID: 33131431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.