These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26366044)

  • 1. Path Following in the Exact Penalty Method of Convex Programming.
    Zhou H; Lange K
    Comput Optim Appl; 2015 Jul; 61(3):609-634. PubMed ID: 26366044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Path Algorithm for Constrained Estimation.
    Zhou H; Lange K
    J Comput Graph Stat; 2013; 22(2):261-283. PubMed ID: 24039382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Generic Path Algorithm for Regularized Statistical Estimation.
    Zhou H; Wu Y
    J Am Stat Assoc; 2014; 109(506):686-699. PubMed ID: 25242834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Penalty Strategy Combined Varying-Parameter Recurrent Neural Network for Solving Time-Varying Multi-Type Constrained Quadratic Programming Problems.
    Zhang Z; Yang S; Zheng L
    IEEE Trans Neural Netw Learn Syst; 2021 Jul; 32(7):2993-3004. PubMed ID: 32726282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximal Distance Algorithms: Theory and Practice.
    Keys KL; Zhou H; Lange K
    J Mach Learn Res; 2019 Apr; 20():. PubMed ID: 31649491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-performance feedback neural network for solving convex nonlinear programming problems.
    Leung Y; Chen KZ; Gao XB
    IEEE Trans Neural Netw; 2003; 14(6):1469-77. PubMed ID: 18244592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new gradient-based neural network for solving linear and quadratic programming problems.
    Leung Y; Chen KZ; Jiao YC; Gao XB; Leung KS
    IEEE Trans Neural Netw; 2001; 12(5):1074-83. PubMed ID: 18249935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithms for Fitting the Constrained Lasso.
    Gaines BR; Kim J; Zhou H
    J Comput Graph Stat; 2018; 27(4):861-871. PubMed ID: 30618485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Ellipse Fitting via Half-Quadratic and Semidefinite Relaxation Optimization.
    Liang J; Wang Y; Zeng X
    IEEE Trans Image Process; 2015 Nov; 24(11):4276-86. PubMed ID: 26219096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ConvexLAR: An Extension of Least Angle Regression
    Xiao W; Wu Y; Zhou H
    J Comput Graph Stat; 2015 Jul; 24(3):603-626. PubMed ID: 27114697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear regularization path for quadratic loss support vector machines.
    Karasuyama M; Takeuchi I
    IEEE Trans Neural Netw; 2011 Oct; 22(10):1613-25. PubMed ID: 21880570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation.
    Bian W; Chen X
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):545-56. PubMed ID: 24807450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial Exactness for the Penalty Function of Biconvex Programming.
    Jiang M; Meng Z; Shen R
    Entropy (Basel); 2021 Jan; 23(2):. PubMed ID: 33494147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Projection Neural Network to Nonsmooth Constrained Pseudoconvex Optimization.
    Liu J; Liao X
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; 34(4):2001-2015. PubMed ID: 34464277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OPTIMAL COMPUTATIONAL AND STATISTICAL RATES OF CONVERGENCE FOR SPARSE NONCONVEX LEARNING PROBLEMS.
    Wang Z; Liu H; Zhang T
    Ann Stat; 2014; 42(6):2164-2201. PubMed ID: 25544785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A smoothing gradient-based neural network strategy for solving semidefinite programming problems.
    Nikseresht A; Nazemi A
    Network; 2022; 33(3-4):187-213. PubMed ID: 35924879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ELASTIC NET FOR COX'S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM.
    Wu Y
    Stat Sin; 2012; 22():27-294. PubMed ID: 23226932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fuzzy Rule-Based Penalty Function Approach for Constrained Evolutionary Optimization.
    Saha C; Das S; Pal K; Mukherjee S
    IEEE Trans Cybern; 2016 Dec; 46(12):2953-2965. PubMed ID: 25312974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MM Algorithms for Geometric and Signomial Programming.
    Lange K; Zhou H
    Math Program; 2014 Feb; 143(1-2):339-356. PubMed ID: 24634545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradient-type penalty method with inertial effects for solving constrained convex optimization problems with smooth data.
    Boţ RI; Csetnek ER; Nimana N
    Optim Lett; 2018; 12(1):17-33. PubMed ID: 31998412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.