These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26366107)

  • 21. Supervised and unsupervised machine learning for automated scoring of sleep-wake and cataplexy in a mouse model of narcolepsy.
    Exarchos I; Rogers AA; Aiani LM; Gross RE; Clifford GD; Pedersen NP; Willie JT
    Sleep; 2020 May; 43(5):. PubMed ID: 31693157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noninvasive three-state sleep-wake staging in mice using electric field sensors.
    Kloefkorn H; Aiani LM; Lakhani A; Nagesh S; Moss A; Goolsby W; Rehg JM; Pedersen NP; Hochman S
    J Neurosci Methods; 2020 Oct; 344():108834. PubMed ID: 32619585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sleep stages and EEG power spectrum in relation to acoustical stimulus arousal threshold in the rat.
    Neckelmann D; Ursin R
    Sleep; 1993 Aug; 16(5):467-77. PubMed ID: 8378687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An on-line automated sleep-wake classification system for laboratory animals.
    Witting W; van der Werf D; Mirmiran M
    J Neurosci Methods; 1996 Jun; 66(2):109-12. PubMed ID: 8835794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time automated sleep scoring: validation of a microcomputer-based system for mice.
    Van Gelder RN; Edgar DM; Dement WC
    Sleep; 1991 Feb; 14(1):48-55. PubMed ID: 1811319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Novel Sleep Stage Scoring System: Combining Expert-Based Rules with a Decision Tree Classifier.
    Gunnarsdottir KM; Gamaldo CE; Salas RME; Ewen JB; Allen RP; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3240-3243. PubMed ID: 30441082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic sleep scoring with LSTM networks: impact of time granularity and input signals.
    Tăuțan AM; Rossi AC; Ionescu B
    Biomed Tech (Berl); 2022 Aug; 67(4):267-281. PubMed ID: 35660133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness.
    Grønli J; Rempe MJ; Clegern WC; Schmidt M; Wisor JP
    J Sleep Res; 2016 Jun; 25(3):257-68. PubMed ID: 26825702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic sleep stage classification using two-channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Oct; 166(1):109-15. PubMed ID: 17681382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic detection of slow wave sleep using two channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Feb; 160(1):171-7. PubMed ID: 16965823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sleep homeostasis in suprachiasmatic nuclei-lesioned rats: effects of sleep deprivation and triazolam administration.
    Trachsel L; Edgar DM; Seidel WF; Heller HC; Dement WC
    Brain Res; 1992 Sep; 589(2):253-61. PubMed ID: 1393593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database.
    Anderer P; Gruber G; Parapatics S; Woertz M; Miazhynskaia T; Klosch G; Saletu B; Zeitlhofer J; Barbanoj MJ; Danker-Hopfe H; Himanen SL; Kemp B; Penzel T; Grozinger M; Kunz D; Rappelsberger P; Schlogl A; Dorffner G
    Neuropsychobiology; 2005; 51(3):115-33. PubMed ID: 15838184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EEG power densities (0.5-20 Hz) in different sleep-wake stages in rats.
    Bjorvatn B; Fagerland S; Ursin R
    Physiol Behav; 1998 Feb; 63(3):413-7. PubMed ID: 9469736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Staging Sleep in Polysomnograms: Analysis of Inter-Scorer Variability.
    Younes M; Raneri J; Hanly P
    J Clin Sleep Med; 2016 Jun; 12(6):885-94. PubMed ID: 27070243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dim light at night does not disrupt timing or quality of sleep in mice.
    Borniger JC; Weil ZM; Zhang N; Nelson RJ
    Chronobiol Int; 2013 Oct; 30(8):1016-23. PubMed ID: 23837748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of an automated single-channel sleep staging algorithm.
    Wang Y; Loparo KA; Kelly MR; Kaplan RF
    Nat Sci Sleep; 2015; 7():101-11. PubMed ID: 26425109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An EEG averaging technique for automated sleep-wake stage identification in the rat.
    van Luijtelaar EL; Coenen AM
    Physiol Behav; 1984 Nov; 33(5):837-41. PubMed ID: 6522504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated classification of neonatal sleep states using EEG.
    Koolen N; Oberdorfer L; Rona Z; Giordano V; Werther T; Klebermass-Schrehof K; Stevenson N; Vanhatalo S
    Clin Neurophysiol; 2017 Jun; 128(6):1100-1108. PubMed ID: 28359652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase space and power spectral approaches for EEG-based automatic sleep-wake classification in humans: a comparative study using short and standard epoch lengths.
    Brignol A; Al-Ani T; Drouot X
    Comput Methods Programs Biomed; 2013 Mar; 109(3):227-38. PubMed ID: 23164523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.