These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26366107)

  • 41. Automated analysis of sleep-wake state in rats.
    Stephenson R; Caron AM; Cassel DB; Kostela JC
    J Neurosci Methods; 2009 Nov; 184(2):263-74. PubMed ID: 19703489
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sleep EEG evaluation: a comparison of results obtained by visual scoring and automatic analysis with the Oxford sleep stager.
    Kubicki S; Höller L; Berg I; Pastelak-Price C; Dorow R
    Sleep; 1989 Apr; 12(2):140-9. PubMed ID: 2711089
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous electroencephalography, real-time measurement of lactate concentration and optogenetic manipulation of neuronal activity in the rodent cerebral cortex.
    Clegern WC; Moore ME; Schmidt MA; Wisor J
    J Vis Exp; 2012 Dec; (70):e4328. PubMed ID: 23271428
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Automatic sleep analysis. I. Scoring of parameters].
    Schlegel T; Kurella B; Meister K
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1990 Mar; 21(1):13-9. PubMed ID: 2110884
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel machine learning system for identifying sleep-wake states in mice.
    Fraigne JJ; Wang J; Lee H; Luke R; Pintwala SK; Peever JH
    Sleep; 2023 Jun; 46(6):. PubMed ID: 37021715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multivariate analysis of full-term neonatal polysomnographic data.
    Gerla V; Paul K; Lhotska L; Krajca V
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029
    [TBL] [Abstract][Full Text] [Related]  

  • 47. IntelliSleepScorer, a software package with a graphic user interface for automated sleep stage scoring in mice based on a light gradient boosting machine algorithm.
    Wang LA; Kern R; Yu E; Choi S; Pan JQ
    Sci Rep; 2023 Mar; 13(1):4275. PubMed ID: 36922536
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intensive care unit depth of sleep: proof of concept of a simple electroencephalography index in the non-sedated.
    Reinke L; van der Hoeven JH; van Putten MJ; Dieperink W; Tulleken JE
    Crit Care; 2014 Apr; 18(2):R66. PubMed ID: 24716479
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectral analysis of sleep EEG in patients with restless legs syndrome.
    Hornyak M; Feige B; Voderholzer U; Riemann D
    Clin Neurophysiol; 2005 Jun; 116(6):1265-72. PubMed ID: 15978488
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An automated, machine learning-based detection algorithm for spike-wave discharges (SWDs) in a mouse model of absence epilepsy.
    Pfammatter JA; Maganti RK; Jones MV
    Epilepsia Open; 2019 Mar; 4(1):110-122. PubMed ID: 30868121
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-throughput visual assessment of sleep stages in mice using machine learning.
    Geuther B; Chen M; Galante RJ; Han O; Lian J; George J; Pack AI; Kumar V
    Sleep; 2022 Feb; 45(2):. PubMed ID: 34718812
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Noninvasive dissection of mouse sleep using a piezoelectric motion sensor.
    Yaghouby F; Donohue KD; O'Hara BF; Sunderam S
    J Neurosci Methods; 2016 Feb; 259():90-100. PubMed ID: 26582569
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kv3 potassium channels control the duration of different arousal states by distinct stochastic and clock-like mechanisms.
    Joho RH; Marks GA; Espinosa F
    Eur J Neurosci; 2006 Mar; 23(6):1567-74. PubMed ID: 16553620
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automated sleep scoring in rats and mice using the naive Bayes classifier.
    Rytkönen KM; Zitting J; Porkka-Heiskanen T
    J Neurosci Methods; 2011 Oct; 202(1):60-4. PubMed ID: 21884727
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of Machine Learning to Sleep Stage Classification.
    Smith A; Anand H; Milosavljevic S; Rentschler KM; Pocivavsek A; Valafar H
    Proc (Int Conf Comput Sci Comput Intell); 2021 Dec; 2021():349-354. PubMed ID: 36313065
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison between an automatic and a visual scoring method of the chin muscle tone during rapid eye movement sleep.
    Ferri R; Gagnon JF; Postuma RB; Rundo F; Montplaisir JY
    Sleep Med; 2014 Jun; 15(6):661-5. PubMed ID: 24831249
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A microcomputer-based system for automated EEG collection and scoring of behavioral state in cats.
    Mamelak A; Quattrochi JJ; Hobson JA
    Brain Res Bull; 1988 Nov; 21(5):843-9. PubMed ID: 3219615
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase.
    Trachsel L; Tobler I; Borbély AA
    Am J Physiol; 1986 Dec; 251(6 Pt 2):R1037-44. PubMed ID: 3789191
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A four-state Markov model of sleep-wakefulness dynamics along light/dark cycle in mice.
    Perez-Atencio L; Garcia-Aracil N; Fernandez E; Barrio LC; Barios JA
    PLoS One; 2018; 13(1):e0189931. PubMed ID: 29304108
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sleep disorders in kindled cats differ according to the timing of polygraphic recordings and of seizures in the sleep-wake cycle.
    Shouse MN
    Exp Neurol; 1987 Apr; 96(1):158-62. PubMed ID: 3556508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.