These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26366480)

  • 1. Propensity of Hydrated Excess Protons and Hydroxide Anions for the Air-Water Interface.
    Tse YL; Chen C; Lindberg GE; Kumar R; Voth GA
    J Am Chem Soc; 2015 Oct; 137(39):12610-6. PubMed ID: 26366480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrated excess proton at water-hydrophobic interfaces.
    Iuchi S; Chen H; Paesani F; Voth GA
    J Phys Chem B; 2009 Apr; 113(13):4017-30. PubMed ID: 18821788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the behaviour of the hydrated excess proton at hydrophobic interfaces.
    Kumar R; Knight C; Voth GA
    Faraday Discuss; 2013; 167():263-78. PubMed ID: 24640495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What Coordinate Best Describes the Affinity of the Hydrated Excess Proton for the Air-Water Interface?
    Li Z; Li C; Wang Z; Voth GA
    J Phys Chem B; 2020 Jun; 124(24):5039-5046. PubMed ID: 32426982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The behavior of NaOH at the air-water interface: a computational study.
    Wick CD; Dang LX
    J Chem Phys; 2010 Jul; 133(2):024705. PubMed ID: 20632768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating hydroxide anion interfacial activity by classical and multistate empirical valence bond molecular dynamics simulations.
    Wick CD; Dang LX
    J Phys Chem A; 2009 Jun; 113(22):6356-64. PubMed ID: 19391589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water.
    Soniat M; Kumar R; Rick SW
    J Chem Phys; 2015 Jul; 143(4):044702. PubMed ID: 26233152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores.
    Bankura A; Chandra A
    J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrated excess protons and their local hydrogen bond transport network as measured by translational, librational, and vibrational frequencies.
    Teschke O; de Castro JR; Gomes WE; Soares DM
    J Chem Phys; 2019 Jun; 150(23):234501. PubMed ID: 31228923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial solvation and slow transport of hydrated excess protons in non-ionic reverse micelles.
    Li Z; Voth GA
    Phys Chem Chem Phys; 2020 May; 22(19):10753-10763. PubMed ID: 32154815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propensity for the air/water interface and ion pairing in magnesium acetate vs magnesium nitrate solutions: molecular dynamics simulations and surface tension measurements.
    Minofar B; Vacha R; Wahab A; Mahiuddin S; Kunz W; Jungwirth P
    J Phys Chem B; 2006 Aug; 110(32):15939-44. PubMed ID: 16898748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton transfer through hydrogen bonds in two-dimensional water layers: a theoretical study based on ab initio and quantum-classical simulations.
    Bankura A; Chandra A
    J Chem Phys; 2015 Jan; 142(4):044701. PubMed ID: 25637997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures.
    Bankura A; Chandra A
    J Chem Phys; 2012 Mar; 136(11):114509. PubMed ID: 22443779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution.
    Tuckerman ME; Marx D; Parrinello M
    Nature; 2002 Jun; 417(6892):925-9. PubMed ID: 12087398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane nafion.
    Petersen MK; Voth GA
    J Phys Chem B; 2006 Sep; 110(37):18594-600. PubMed ID: 16970488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientation-Induced Adsorption of Hydrated Protons at the Air-Water Interface.
    Mamatkulov SI; Allolio C; Netz RR; Bonthuis DJ
    Angew Chem Int Ed Engl; 2017 Dec; 56(50):15846-15851. PubMed ID: 28941066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of hydrated excess protons near phospholipid bilayers.
    Yamashita T; Voth GA
    J Phys Chem B; 2010 Jan; 114(1):592-603. PubMed ID: 19924872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational investigation of the first solvation shell structure of interfacial and bulk aqueous chloride and iodide ions.
    Wick CD; Xantheas SS
    J Phys Chem B; 2009 Apr; 113(13):4141-6. PubMed ID: 19014185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.