These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 26366493)
1. Rotation dynamics of particles trapped in a rotating beam. Yu H; She W J Opt Soc Am A Opt Image Sci Vis; 2015 Jan; 32(1):90-100. PubMed ID: 26366493 [TBL] [Abstract][Full Text] [Related]
2. Passive torque wrench and angular position detection using a single-beam optical trap. Inman J; Forth S; Wang MD Opt Lett; 2010 Sep; 35(17):2949-51. PubMed ID: 20808379 [TBL] [Abstract][Full Text] [Related]
3. Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam. Zhao Y; Shapiro D; McGloin D; Chiu DT; Marchesini S Opt Express; 2009 Dec; 17(25):23316-22. PubMed ID: 20052258 [TBL] [Abstract][Full Text] [Related]
4. An opto-thermal approach for rotating a trapped core-shell magnetic microparticle with patchy shell. Bai W; Shao M; Zhou J; Zhao Q; Ji F; Zhong MC Rev Sci Instrum; 2022 Aug; 93(8):084902. PubMed ID: 36050094 [TBL] [Abstract][Full Text] [Related]
6. Gradient torque and its effect on rotational dynamics of optically trapped non-spherical particles in the elliptic Gaussian beam. Zeng K; Pu J; Xu X; Wu Y; Xiao D; Wu X Opt Express; 2023 May; 31(10):16582-16592. PubMed ID: 37157734 [TBL] [Abstract][Full Text] [Related]
7. Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers. Sheu FW; Lan TK; Lin YC; Chen S; Ay C Opt Express; 2010 Jul; 18(14):14724-9. PubMed ID: 20639958 [TBL] [Abstract][Full Text] [Related]
8. Non-spherical particles in optical tweezers: A numerical solution. Herranen J; Markkanen J; Videen G; Muinonen K PLoS One; 2019; 14(12):e0225773. PubMed ID: 31805109 [TBL] [Abstract][Full Text] [Related]
9. Measuring local properties inside a cell-mimicking structure using rotating optical tweezers. Zhang S; Gibson LJ; Stilgoe AB; Nieminen TA; Rubinsztein-Dunlop H J Biophotonics; 2019 Jul; 12(7):e201900022. PubMed ID: 30779305 [TBL] [Abstract][Full Text] [Related]
10. Anomalous motion of a particle levitated by Laguerre-Gaussian beams. Li Y; Zhou LM; Zhao N Opt Lett; 2021 Jan; 46(1):106-109. PubMed ID: 33362027 [TBL] [Abstract][Full Text] [Related]
11. Rotational control within optical tweezers by use of a rotating aperture. O'Neil AT; Padgett MJ Opt Lett; 2002 May; 27(9):743-5. PubMed ID: 18007918 [TBL] [Abstract][Full Text] [Related]
12. Detection of sub-degree angular fluctuations of the local cell membrane slope using optical tweezers. Vaippully R; Ramanujan V; Gopalakrishnan M; Bajpai S; Roy B Soft Matter; 2020 Aug; 16(32):7606-7612. PubMed ID: 32724976 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear accelerated orbiting motions of optical trapped particles through two-photon absorption. Zhang X; Rui G; He J; Cui Y; Gu B Opt Lett; 2021 Jan; 46(1):110-113. PubMed ID: 33362028 [TBL] [Abstract][Full Text] [Related]
14. Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle. Arita Y; McKinley AW; Mazilu M; Rubinsztein-Dunlop H; Dholakia K Anal Chem; 2011 Dec; 83(23):8855-8. PubMed ID: 22029267 [TBL] [Abstract][Full Text] [Related]
15. An optical apparatus for rotation and trapping. Gutiérrez-Medina B; Andreasson JO; Greenleaf WJ; Laporta A; Block SM Methods Enzymol; 2010; 475():377-404. PubMed ID: 20627165 [TBL] [Abstract][Full Text] [Related]
17. Angular and position stability of a nanorod trapped in an optical tweezers. Bareil PB; Sheng Y Opt Express; 2010 Dec; 18(25):26388-98. PubMed ID: 21164989 [TBL] [Abstract][Full Text] [Related]
18. Rotation of large asymmetrical absorbing objects by Laguerre-Gauss beams. Herne CM; Capuzzi KM; Sobel E; Kropas RT Opt Lett; 2015 Sep; 40(17):4026-9. PubMed ID: 26368703 [TBL] [Abstract][Full Text] [Related]