BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1079 related articles for article (PubMed ID: 26366525)

  • 1. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes.
    Sachdeva R; Theisen CC; Ninan V; Twiss JL; Houlé JD
    Exp Neurol; 2016 Feb; 276():72-82. PubMed ID: 26366525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise and Peripheral Nerve Grafts as a Strategy To Promote Regeneration after Acute or Chronic Spinal Cord Injury.
    Theisen CC; Sachdeva R; Austin S; Kulich D; Kranz V; Houle JD
    J Neurotrauma; 2017 May; 34(10):1909-1914. PubMed ID: 28437223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraneural Injection of ATP Stimulates Regeneration of Primary Sensory Axons in the Spinal Cord.
    Wu D; Lee S; Luo J; Xia H; Gushchina S; Richardson PM; Yeh J; Krügel U; Franke H; Zhang Y; Bo X
    J Neurosci; 2018 Feb; 38(6):1351-1365. PubMed ID: 29279307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration of adult rat sensory axons into intraspinal nerve grafts: promoting effects of conditioning lesion and graft predegeneration.
    Oudega M; Varon S; Hagg T
    Exp Neurol; 1994 Oct; 129(2):194-206. PubMed ID: 7957734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration.
    Tobias CA; Shumsky JS; Shibata M; Tuszynski MH; Fischer I; Tessler A; Murray M
    Exp Neurol; 2003 Nov; 184(1):97-113. PubMed ID: 14637084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mRNAs and Protein Synthetic Machinery Localize into Regenerating Spinal Cord Axons When They Are Provided a Substrate That Supports Growth.
    Kalinski AL; Sachdeva R; Gomes C; Lee SJ; Shah Z; Houle JD; Twiss JL
    J Neurosci; 2015 Jul; 35(28):10357-70. PubMed ID: 26180210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury.
    Sachdeva R; Farrell K; McMullen MK; Twiss JL; Houle JD
    Neural Plast; 2016; 2016():4087254. PubMed ID: 27375904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury.
    Goganau I; Sandner B; Weidner N; Fouad K; Blesch A
    Exp Neurol; 2018 Feb; 300():247-258. PubMed ID: 29183676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord.
    Tom VJ; Sandrow-Feinberg HR; Miller K; Santi L; Connors T; Lemay MA; Houlé JD
    J Neurosci; 2009 Nov; 29(47):14881-90. PubMed ID: 19940184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacologically inhibiting kinesin-5 activity with monastrol promotes axonal regeneration following spinal cord injury.
    Xu C; Klaw MC; Lemay MA; Baas PW; Tom VJ
    Exp Neurol; 2015 Jan; 263():172-6. PubMed ID: 25447935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrin-Driven Axon Regeneration in the Spinal Cord Activates a Distinctive CNS Regeneration Program.
    Cheah M; Cheng Y; Petrova V; Cimpean A; Jendelova P; Swarup V; Woolf CJ; Geschwind DH; Fawcett JW
    J Neurosci; 2023 Jun; 43(26):4775-4794. PubMed ID: 37277179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preconditioning selective ventral root injury promotes plasticity of ascending sensory neurons in the injured spinal cord of adult rats--possible roles of brain-derived neurotrophic factor, TrkB and p75 neurotrophin receptor.
    Li F; Li L; Song XY; Zhong JH; Luo XG; Xian CJ; Zhou XF
    Eur J Neurosci; 2009 Oct; 30(7):1280-96. PubMed ID: 19788572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axon regeneration and exercise-dependent plasticity after spinal cord injury.
    Houle JD; Côté MP
    Ann N Y Acad Sci; 2013 Mar; 1279(1):154-63. PubMed ID: 23531013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral nerve grafts after cervical spinal cord injury in adult cats.
    Côté MP; Hanna A; Lemay MA; Ollivier-Lanvin K; Santi L; Miller K; Monaghan R; Houlé JD
    Exp Neurol; 2010 Sep; 225(1):173-82. PubMed ID: 20599980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury.
    Nomura H; Baladie B; Katayama Y; Morshead CM; Shoichet MS; Tator CH
    Neurosurgery; 2008 Jul; 63(1):127-41; discussion 141-3. PubMed ID: 18728578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of primary sensory axons into the adult rat spinal cord via a peripheral nerve graft bridging the lumbar dorsal roots to the dorsal column.
    Dam-Hieu P; Liu S; Choudhri T; Said G; Tadié M
    J Neurosci Res; 2002 May; 68(3):293-304. PubMed ID: 12111859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo.
    Peterson SL; Nguyen HX; Mendez OA; Anderson AJ
    J Neurosci; 2015 Mar; 35(10):4332-49. PubMed ID: 25762679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar.
    Wu D; Klaw MC; Connors T; Kholodilov N; Burke RE; Tom VJ
    J Neurosci; 2015 Aug; 35(31):11068-80. PubMed ID: 26245968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation into the potential for activity-dependent regeneration of the rubrospinal tract after spinal cord injury.
    Harvey PJ; Grochmal J; Tetzlaff W; Gordon T; Bennett DJ
    Eur J Neurosci; 2005 Dec; 22(12):3025-35. PubMed ID: 16367769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.