BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 26366564)

  • 1. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.
    Wang T; Peng S; Krinner G; Ryder J; Li Y; Dantec-Nédélec S; Ottlé C
    PLoS One; 2015; 10(9):e0137275. PubMed ID: 26366564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.
    Loranty MM; Berner LT; Goetz SJ; Jin Y; Randerson JT
    Glob Chang Biol; 2014 Feb; 20(2):594-606. PubMed ID: 24039000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.
    de Wit HA; Bryn A; Hofgaard A; Karstensen J; Kvalevåg MM; Peters GP
    Glob Chang Biol; 2014 Jul; 20(7):2344-55. PubMed ID: 24343906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems.
    Wang X; Wang T; Guo H; Liu D; Zhao Y; Zhang T; Liu Q; Piao S
    Glob Chang Biol; 2018 Apr; 24(4):1651-1662. PubMed ID: 28994227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001-2014.
    Chen X; Liang S; Cao Y; He T; Wang D
    Sci Rep; 2015 Nov; 5():16820. PubMed ID: 26581632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snow Albedo Feedbacks Enhance Snow Impurity-Induced Radiative Forcing in the Sierra Nevada.
    Huang H; Qian Y; He C; Bair EH; Rittger K
    Geophys Res Lett; 2022 Jun; 49(11):e2022GL098102. PubMed ID: 35859851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change decreases the cooling effect from postfire albedo in boreal North America.
    Potter S; Solvik K; Erb A; Goetz SJ; Johnstone JF; Mack MC; Randerson JT; Román MO; Schaaf CL; Turetsky MR; Veraverbeke S; Walker XJ; Wang Z; Massey R; Rogers BM
    Glob Chang Biol; 2020 Mar; 26(3):1592-1607. PubMed ID: 31658411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal variations of land surface albedo and associated influencing factors on the Tibetan Plateau.
    Pang G; Chen D; Wang X; Lai HW
    Sci Total Environ; 2022 Jan; 804():150100. PubMed ID: 34517323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spring warming in Yukon mountains is not amplified by the snow albedo feedback.
    Williamson SN; Anslow FS; Clarke GKC; Gamon JA; Jarosch AH; Hik DS
    Sci Rep; 2018 Jun; 8(1):9000. PubMed ID: 29899422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data.
    Wang Z; Erb AM; Schaaf CB; Sun Q; Liu Y; Yang Y; Shuai Y; Casey KA; Román MO
    Remote Sens Environ; 2016 Nov; 185():71-83. PubMed ID: 29769751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dependence of the ice-albedo feedback on atmospheric properties.
    von Paris P; Selsis F; Kitzmann D; Rauer H
    Astrobiology; 2013 Oct; 13(10):899-909. PubMed ID: 24111995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate feedbacks at the tundra-taiga interface.
    Harding R; Kuhry P; Christensen TR; Sykes MT; Dankers R; van der Linden S
    Ambio; 2002 Aug; Spec No 12():47-55. PubMed ID: 12374059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo.
    Bright RM; Strømman AH; Peters GP
    Environ Sci Technol; 2011 Sep; 45(17):7570-80. PubMed ID: 21797227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau.
    Tian L; Chen J; Zhang Y
    PLoS One; 2017; 12(9):e0180559. PubMed ID: 28886037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo.
    Betts RA
    Nature; 2000 Nov; 408(6809):187-90. PubMed ID: 11089969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.
    Jones CG; Wyser K; Ullerstig A; Willén U
    Ambio; 2004 Jun; 33(4-5):211-20. PubMed ID: 15264599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations.
    Braconnot P; Kageyama M
    Philos Trans A Math Phys Eng Sci; 2015 Nov; 373(2054):. PubMed ID: 26438281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assimilation of blended in situ-satellite snow water equivalent into the National Water Model for improving hydrologic simulation in two US river basins.
    Gan Y; Zhang Y; Liu Y; Kongoli C; Grassotti C
    Sci Total Environ; 2022 Sep; 838(Pt 4):156567. PubMed ID: 35690208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.
    Holland MM; Landrum L
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2045):. PubMed ID: 26032318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of seasonal snow on the growing season of temperate vegetation in China.
    Yu Z; Liu S; Wang J; Sun P; Liu W; Hartley DS
    Glob Chang Biol; 2013 Jul; 19(7):2182-95. PubMed ID: 23532953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.