BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 26366564)

  • 21. Planetary albedo decline over Northwest India contributing to near surface warming.
    Sai Krishna SVS; Prijith SS; Kumar R; Sesha Sai MVR; Ramana MV
    Sci Total Environ; 2022 Apr; 816():151607. PubMed ID: 34798084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone.
    Joshi MM; Haberle RM
    Astrobiology; 2012 Jan; 12(1):3-8. PubMed ID: 22181553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assimilation of Satellite-Based Snow Cover and Freeze/Thaw Observations Over High Mountain Asia.
    Xue Y; Houser PR; Maggioni V; Mei Y; Kumar SV; Yoon Y
    Front Earth Sci (Lausanne); 2019; 7():. PubMed ID: 33869235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-absorbing impurities in snow of the Indian Western Himalayas: impact on snow albedo, radiative forcing, and enhanced melting.
    Thind PS; Chandel KK; Sharma SK; Mandal TK; John S
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7566-7578. PubMed ID: 30663015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s.
    Zhang R; Wang H; Fu Q; Rasch PJ; Wang X
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):23947-23953. PubMed ID: 31712425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Future snow projections in a small basin of the Western Himalaya.
    Nepal S; Khatiwada KR; Pradhananga S; Kralisch S; Samyn D; Bromand MT; Jamal N; Dildar M; Durrani F; Rassouly F; Azizi F; Salehi W; Malikzooi R; Krause P; Koirala S; Chevallier P
    Sci Total Environ; 2021 Nov; 795():148587. PubMed ID: 34247069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of the accuracy of snow surface direct beam spectral albedo under a variety of overcast skies derived by a reciprocal approach through radiative transfer simulation.
    Li S; Zhou X
    Appl Opt; 2003 Sep; 42(27):5427-41. PubMed ID: 14526830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biophysical impacts of northern vegetation changes on seasonal warming patterns.
    Lian X; Jeong S; Park CE; Xu H; Li LZX; Wang T; Gentine P; Peñuelas J; Piao S
    Nat Commun; 2022 Jul; 13(1):3925. PubMed ID: 35798743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon-equivalent metrics for albedo changes in land management contexts: relevance of the time dimension.
    Bright RM; Bogren W; Bernier P; Astrup R
    Ecol Appl; 2016 Sep; 26(6):1868-1880. PubMed ID: 27755703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A longer vernal window: the role of winter coldness and snowpack in driving spring transitions and lags.
    Contosta AR; Adolph A; Burchsted D; Burakowski E; Green M; Guerra D; Albert M; Dibb J; Martin M; McDowell WH; Routhier M; Wake C; Whitaker R; Wollheim W
    Glob Chang Biol; 2017 Apr; 23(4):1610-1625. PubMed ID: 27808458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aerosol-Radiation Interactions in China in Winter: Competing Effects of Reduced Shortwave Radiation and Cloud-Snowfall-Albedo Feedbacks Under Rapidly Changing Emissions.
    Moch JM; Mickley LJ; Keller CA; Bian H; Lundgren EW; Zhai S; Jacob DJ
    J Geophys Res Atmos; 2022 May; 127(9):e2021JD035442. PubMed ID: 35859567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Land surface anomaly simulations and predictions with a climate model: an El Niño Southern Oscillation case study.
    Putt D; Haines K; Gurney R; Liu C
    Philos Trans A Math Phys Eng Sci; 2009 Mar; 367(1890):917-23. PubMed ID: 19087940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered albedo dominates the radiative forcing changes in a subtropical forest following an extreme snow event.
    Gnanamoorthy P; Song Q; Zhao J; Zhang Y; Liu Y; Zhou W; Sha L; Fan Z; Deb Burman PK
    Glob Chang Biol; 2021 Dec; 27(23):6192-6205. PubMed ID: 34525229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Irrigation and warming drive the decreases in surface albedo over High Mountain Asia.
    Maina FZ; Kumar SV; Gangodagamage C
    Sci Rep; 2022 Sep; 12(1):16163. PubMed ID: 36171251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topography, albedo-temperature feedback, and climate sensitivity.
    Birchfield GE; Wertman J
    Science; 1983 Jan; 219(4582):284-5. PubMed ID: 17798274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of two management practices in the Canadian Prairies on radiative forcing.
    Liu J; Worth DE; Desjardins RL; Haak D; McConkey B; Cerkowniak D
    Sci Total Environ; 2021 Apr; 765():142701. PubMed ID: 33071129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of aerosol radiative effects on surface temperature and snow melt in the Himalayan region.
    Sharma A; Bhattacharya A; Venkataraman C
    Sci Total Environ; 2022 Mar; 810():151299. PubMed ID: 34756901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship of tropospheric stability to climate sensitivity and Earth's observed radiation budget.
    Ceppi P; Gregory JM
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):13126-13131. PubMed ID: 29183969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrologic Remote Sensing and Land Surface Data Assimilation.
    Moradkhani H
    Sensors (Basel); 2008 May; 8(5):2986-3004. PubMed ID: 27879861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial and temporal variability of organic C and N concentrations and export from 30 boreal rivers induced by land use and climate.
    Mattsson T; Kortelainen P; Räike A; Lepistö A; Thomas DN
    Sci Total Environ; 2015 Mar; 508():145-54. PubMed ID: 25555556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.