These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26366650)

  • 1. Efficient propagation-inside-layer expansion algorithm for solving the scattering from three-dimensional nested homogeneous dielectric bodies with arbitrary shape.
    Bellez S; Bourlier C; Kubické G
    J Opt Soc Am A Opt Image Sci Vis; 2015 Mar; 32(3):392-401. PubMed ID: 26366650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized method of moments: a framework for analyzing scattering from homogeneous dielectric bodies.
    Nair NV; Shanker B
    J Opt Soc Am A Opt Image Sci Vis; 2011 Mar; 28(3):328-40. PubMed ID: 21383814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RCS Estimation of Singly Curved Dielectric Shell Structure with PMCHWT Method and Experimental Verification.
    Im HR; Kim W; Noh YH; Hong IP; Yook JG
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PMCHWT Solver Accelerated by Adaptive Cross Approximation for Efficient Computation of Scattering from Metal Nanoparticles.
    Liu Z; Xi L; Bao Y; Cheng Z
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver.
    Uysal IE; Arda Ülkü H; Bağci H
    J Opt Soc Am A Opt Image Sci Vis; 2016 Sep; 33(9):1747-59. PubMed ID: 27607496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast numerical method for electromagnetic scattering by rough layered interfaces: propagation-inside-layer expansion method.
    Déchamps N; de Beaucoudrey N; Bourlier C; Toutain S
    J Opt Soc Am A Opt Image Sci Vis; 2006 Feb; 23(2):359-69. PubMed ID: 16477841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two domain decomposition methods, SDIM and CBFM, for scattering from a two-dimensional perfectly conducting rough surface: comparison and parametric study.
    Bourlier C; Arencibia Noa Y; Kubické G; Bellez S
    J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):1512-1525. PubMed ID: 32902443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of electromagnetic scattering from conducting targets above and below the dielectric rough surface.
    Guo L; Liang Y; Wu Z
    Opt Express; 2011 Mar; 19(7):5785-801. PubMed ID: 21451603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scattering of a zero-order Bessel beam by arbitrarily shaped homogeneous dielectric particles.
    Cui Z; Han Y; Han L
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1913-20. PubMed ID: 24322844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of scattering from complex dielectric objects using the generalized method of moments.
    Li J; Dault D; Nair N; Shanker B
    J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2346-55. PubMed ID: 25401344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities.
    Chremmos I
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jan; 27(1):85-94. PubMed ID: 20035307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient reconstruction of dielectric objects based on integral equation approach with Gauss-Newton minimization.
    Tong MS; Yang K; Sheng WT; Zhu ZY
    IEEE Trans Image Process; 2013 Dec; 22(12):4930-7. PubMed ID: 23996559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies.
    Barber P; Yeh C
    Appl Opt; 1975 Dec; 14(12):2864-72. PubMed ID: 20155124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended propagation-inside-layer expansion method combined with the forward-backward method to study the scattering from an object above a rough surface.
    Kouali M; Kubické G; Bourlier C
    Opt Lett; 2012 Jul; 37(14):2985-7. PubMed ID: 22825200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solutions of large-scale electromagnetics problems involving dielectric objects with the parallel multilevel fast multipole algorithm.
    Ergül Ö
    J Opt Soc Am A Opt Image Sci Vis; 2011 Nov; 28(11):2261-8. PubMed ID: 22048293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient vertical mode expansion method for scattering by arbitrary layered cylindrical structures.
    Shi H; Lu YY
    Opt Express; 2015 Jun; 23(11):14618-29. PubMed ID: 26072822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field-only surface integral equations: scattering from a dielectric body.
    Sun Q; Klaseboer E; Yuffa AJ; Chan DYC
    J Opt Soc Am A Opt Image Sci Vis; 2020 Feb; 37(2):284-293. PubMed ID: 32118909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient hybrid method for scattering from arbitrary dielectric objects buried under a rough surface: TM case.
    Xu RW; Guo LX
    Opt Express; 2014 Mar; 22(6):6844-58. PubMed ID: 24664033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and accurate analysis of large-scale composite structures with the parallel multilevel fast multipole algorithm.
    Ergül Ö; Gürel L
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):509-17. PubMed ID: 23456127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast method to compute scattering by a buried object under a randomly rough surface: PILE combined with FB-SA.
    Bourlier C; Kubické G; Déchamps N
    J Opt Soc Am A Opt Image Sci Vis; 2008 Apr; 25(4):891-902. PubMed ID: 18382488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.