These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 26367051)

  • 61. Effect of correction of ocular aberration dynamics on the accommodation response to a sinusoidally moving stimulus.
    Chin SS; Hampson KM; Mallen EA
    Opt Lett; 2009 Nov; 34(21):3274-6. PubMed ID: 19881565
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optimizing single-mode collection from pointlike sources of single photons with adaptive optics.
    Hill AD; Hervas D; Nash J; Graham M; Burgers A; Paudel U; Steel D; Schneider C; Kamp M; Höfling S; Wang J; Lin J; Zhao W; Kwiat PG
    Opt Express; 2017 Aug; 25(16):18629-18642. PubMed ID: 29041060
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Aberration retrieval by incorporating customized priors for estimating Zernike coefficients.
    Wang B; Wang X; An Q
    Sci Rep; 2020 Jul; 10(1):11137. PubMed ID: 32636431
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Automated fast computational adaptive optics for optical coherence tomography based on a stochastic parallel gradient descent algorithm.
    Zhu D; Wang R; Žurauskas M; Pande P; Bi J; Yuan Q; Wang L; Gao Z; Boppart SA
    Opt Express; 2020 Aug; 28(16):23306-23319. PubMed ID: 32752329
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Visual acuity and optical parameters in progressive-power lenses.
    Villegas EA; Artal P
    Optom Vis Sci; 2006 Sep; 83(9):672-81. PubMed ID: 16971846
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy.
    Aviles-Espinosa R; Andilla J; Porcar-Guezenec R; Olarte OE; Nieto M; Levecq X; Artigas D; Loza-Alvarez P
    Biomed Opt Express; 2011 Nov; 2(11):3135-49. PubMed ID: 22076274
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE).
    Pilar J; Slezak O; Sikocinski P; Divoky M; Sawicka M; Bonora S; Lucianetti A; Mocek T; Jelinkova H
    Appl Opt; 2014 May; 53(15):3255-61. PubMed ID: 24922211
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A three-dimensional point spread function for phase retrieval and deconvolution.
    Liu X; Wang L; Wang J; Meng H
    Opt Express; 2012 Jul; 20(14):15392-405. PubMed ID: 22772236
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Concept and modeling analysis of a high fidelity multimode deformable mirror.
    Zhou C; Li Y; Wang A; Xing T
    Appl Opt; 2015 Jun; 54(17):5436-43. PubMed ID: 26192845
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Distortion correction for particle image velocimetry using multiple-input deep convolutional neural network and Hartmann-Shack sensing.
    Gao Z; Radner H; Büttner L; Ye H; Li X; Czarske J
    Opt Express; 2021 Jun; 29(12):18669-18687. PubMed ID: 34154119
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Monochromatic ocular wavefront aberrations in the awake-behaving cat.
    Huxlin KR; Yoon G; Nagy L; Porter J; Williams D
    Vision Res; 2004; 44(18):2159-69. PubMed ID: 15183683
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Adaptive optics wide-field microscopy using direct wavefront sensing.
    Azucena O; Crest J; Kotadia S; Sullivan W; Tao X; Reinig M; Gavel D; Olivier S; Kubby J
    Opt Lett; 2011 Mar; 36(6):825-7. PubMed ID: 21403697
    [TBL] [Abstract][Full Text] [Related]  

  • 73. On representing and correcting wavefront errors in high-contrast imaging systems.
    Give'on A; Kasdin NJ; Vanderbei RJ; Avitzour Y
    J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1063-73. PubMed ID: 16642183
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fully refractive adaptive optics fluorescence microscope using an optofluidic wavefront modulator.
    Rajaeipour P; Dorn A; Banerjee K; Zappe H; Ataman Ç
    Opt Express; 2020 Mar; 28(7):9944-9956. PubMed ID: 32225593
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Deep learning control model for adaptive optics systems.
    Xu Z; Yang P; Hu K; Xu B; Li H
    Appl Opt; 2019 Mar; 58(8):1998-2009. PubMed ID: 30874067
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nonlinear spline wavefront reconstruction from Shack-Hartmann intensity measurements through small aberration approximations.
    Brunner E; de Visser CC; Verhaegen M
    J Opt Soc Am A Opt Image Sci Vis; 2017 Sep; 34(9):1535-1549. PubMed ID: 29036157
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fast, precise, and shape-flexible registration of wavefronts.
    Berlakovich N; Csencsics E; Fuerst M; Schitter G
    Appl Opt; 2021 Aug; 60(23):6781-6790. PubMed ID: 34613156
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Gradient cross-correlation algorithm for scene-based Shack-Hartmann wavefront sensing.
    Wang Y; Chen X; Cao Z; Zhang X; Liu C; Mu Q
    Opt Express; 2018 Jun; 26(13):17549-17562. PubMed ID: 30119566
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Retrieval of wave aberration of human eyes from actual point-spread-function data.
    Artal P; Santamaría J; Bescós J
    J Opt Soc Am A; 1988 Aug; 5(8):1201-6. PubMed ID: 3171731
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Liquid-crystal intraocular adaptive lens with wireless control.
    Simonov AN; Vdovin G; Loktev M
    Opt Express; 2007 Jun; 15(12):7468-78. PubMed ID: 19547070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.