BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26367111)

  • 1. Size-controllable DNA nanoribbons assembled from three types of reusable brick single-strand DNA tiles.
    Shi X; Chen C; Li X; Song T; Chen Z; Zhang Z; Wang Y
    Soft Matter; 2015 Nov; 11(43):8484-92. PubMed ID: 26367111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.
    Shi X; Lu W; Wang Z; Pan L; Cui G; Xu J; LaBean TH
    Nanotechnology; 2014 Feb; 25(7):075602. PubMed ID: 24451169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of DNA nanotubes with controllable diameters and patterns using hierarchical DNA sub-tiles.
    Shi X; Wu X; Song T; Li X
    Nanoscale; 2016 Aug; 8(31):14785-92. PubMed ID: 27444699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA origami frame filled with two types of single-stranded tiles.
    Chen C; Xu J; Ruan L; Zhao H; Li X; Shi X
    Nanoscale; 2022 Apr; 14(14):5340-5346. PubMed ID: 35352725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of single chirality carbon nanotubes.
    Zheng M; Semke ED
    J Am Chem Soc; 2007 May; 129(19):6084-5. PubMed ID: 17458969
    [No Abstract]   [Full Text] [Related]  

  • 7. Spatial Organization of Enzyme Cascade on a DNA Origami Nanostructure.
    Fu J; Li T
    Methods Mol Biol; 2017; 1500():153-164. PubMed ID: 27813007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-directed self-assembling of carbon nanotubes.
    Li S; He P; Dong J; Guo Z; Dai L
    J Am Chem Soc; 2005 Jan; 127(1):14-5. PubMed ID: 15631425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex shapes self-assembled from single-stranded DNA tiles.
    Wei B; Dai M; Yin P
    Nature; 2012 May; 485(7400):623-6. PubMed ID: 22660323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SWNT-DNA and SWNT-polyC hybrids: AFM study and computer modeling.
    Karachevtsev MV; Lytvyn OS; Stepanian SG; Leontiev VS; Adamowicz L; Karachevtsev VA
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1473-80. PubMed ID: 18468177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on a special DNA nanotube assembled from two single-stranded tiles.
    Xu F; Wu T; Shi X; Pan L
    Nanotechnology; 2019 Mar; 30(11):115602. PubMed ID: 30566929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Stranded Tile Stoppers for Interlocked DNA Architectures.
    Valero J; Lohmann F; Keppner D; Famulok M
    Chembiochem; 2016 Jun; 17(12):1146-9. PubMed ID: 26972112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions.
    Rahbani JF; Hariri AA; Cosa G; Sleiman HF
    ACS Nano; 2015 Dec; 9(12):11898-908. PubMed ID: 26556531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of complex two-dimensional shapes from single-stranded DNA tiles.
    Wei B; Vhudzijena MK; Robaszewski J; Yin P
    J Vis Exp; 2015 May; (99):e52486. PubMed ID: 25993048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles.
    Kim J; Ha TH; Park SH
    Nanoscale; 2015 Aug; 7(29):12336-42. PubMed ID: 26147712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programming DNA tube circumferences.
    Yin P; Hariadi RF; Sahu S; Choi HM; Park SH; Labean TH; Reif JH
    Science; 2008 Aug; 321(5890):824-6. PubMed ID: 18687961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring the electronic structure of double-walled carbon nanotubes by encapsulating single-stranded DNA.
    Li Y; Kaneko T; Hatakeyama R
    Small; 2010 Mar; 6(6):729-32. PubMed ID: 20183813
    [No Abstract]   [Full Text] [Related]  

  • 18. Synthesis and characterization of self-assembled DNA nanostructures.
    Lin C; Ke Y; Chhabra R; Sharma J; Liu Y; Yan H
    Methods Mol Biol; 2011; 749():1-11. PubMed ID: 21674361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembling supramolecular complexes by single-stranded extension from plasmid DNA.
    Svahn MG; Hasan M; Sigot V; Valle-Delgado JJ; Rutland MW; Lundin KE; Smith CI
    Oligonucleotides; 2007; 17(1):80-94. PubMed ID: 17461765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.