These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26367111)

  • 21. Structural and thermodynamic analysis of modified nucleosides in self-assembled DNA cross-tiles.
    Hakker L; Marchi AN; Harris KA; LaBean TH; Agris PF
    J Biomol Struct Dyn; 2014; 32(2):319-29. PubMed ID: 23527476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybridization with nanostructures of single-stranded DNA.
    Liu M; Liu GY
    Langmuir; 2005 Mar; 21(5):1972-8. PubMed ID: 15723497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel method for the functionalization of gamma-irradiated single wall carbon nanotubes with DNA.
    Jovanović SP; Marković ZM; Kleut DN; Romcević NZ; Trajković VS; Dramićanin MD; Todorović Marković BM
    Nanotechnology; 2009 Nov; 20(44):445602. PubMed ID: 19801777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triangulated Wireframe Structures Assembled Using Single-Stranded DNA Tiles.
    Matthies M; Agarwal NP; Poppleton E; Joshi FM; Šulc P; Schmidt TL
    ACS Nano; 2019 Feb; 13(2):1839-1848. PubMed ID: 30624898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Programming DNA Tube Circumference by Tile Offset Connection.
    Zhang Y; Chen X; Kang G; Peng R; Pan V; Sundaresan R; Wang P; Ke Y
    J Am Chem Soc; 2019 Dec; 141(50):19529-19532. PubMed ID: 31793775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable DNA Motifs, 1D and 2D Nanostructures Constructed from Small Circular DNA Molecules.
    Guo X; Wang XM; Xiao SJ
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31033948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 2D DNA lattices assembled from DX-coupled tiles.
    Zhang W; Jiang C; Guo X; Muhammad Faran Ashraf Baig M; Ni C; Xiao SJ
    J Colloid Interface Sci; 2022 Jun; 616():499-508. PubMed ID: 35228046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA.
    Gigliotti B; Sakizzie B; Bethune DS; Shelby RM; Cha JN
    Nano Lett; 2006 Feb; 6(2):159-64. PubMed ID: 16464027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface morphology of hybrids of double-stranded DNA and single-walled carbon nanotubes studied by atomic force microscopy.
    Hayashida T; Umemura K
    Colloids Surf B Biointerfaces; 2013 Jan; 101():49-54. PubMed ID: 22796771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective binding of single-stranded DNA-binding proteins onto DNA molecules adsorbed on single-walled carbon nanotubes.
    Nii D; Hayashida T; Yamaguchi Y; Ikawa S; Shibata T; Umemura K
    Colloids Surf B Biointerfaces; 2014 Sep; 121():325-30. PubMed ID: 24974776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA origami templated self-assembly of discrete length single wall carbon nanotubes.
    Zhao Z; Liu Y; Yan H
    Org Biomol Chem; 2013 Jan; 11(4):596-8. PubMed ID: 23208726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Folding DNA to create nanoscale shapes and patterns.
    Rothemund PW
    Nature; 2006 Mar; 440(7082):297-302. PubMed ID: 16541064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length.
    Yang QH; Wang Q; Gale N; Oton CJ; Cui L; Nandhakumar IS; Zhu Z; Tang Z; Brown T; Loh WH
    Nanotechnology; 2009 May; 20(19):195603. PubMed ID: 19420642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.
    Liu D; Park SH; Reif JH; LaBean TH
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):717-22. PubMed ID: 14709674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Weave tile architecture construction strategy for DNA nanotechnology.
    Hansen MN; Zhang AM; Rangnekar A; Bompiani KM; Carter JD; Gothelf KV; LaBean TH
    J Am Chem Soc; 2010 Oct; 132(41):14481-6. PubMed ID: 20863133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA dumbbell tiles with uneven widths for 2D arrays.
    Ali M; Afshan N; Jiang C; Xiao SJ
    Org Biomol Chem; 2019 Jan; 17(5):1277-1283. PubMed ID: 30663748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precise structure control of three-state nanomechanical DNA origami devices.
    Kuzuya A; Watanabe R; Hashizume M; Kaino M; Minamida S; Kameda K; Ohya Y
    Methods; 2014 May; 67(2):250-5. PubMed ID: 24270064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex reconfiguration of DNA nanostructures.
    Wei B; Ong LL; Chen J; Jaffe AS; Yin P
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7475-9. PubMed ID: 24899518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of a Holliday Junction in Small Circular DNA Molecules for Stable Motifs and Two-Dimensional Lattices.
    Guo X; Wang XM; Wei S; Xiao SJ
    Chembiochem; 2018 Jul; 19(13):1379-1385. PubMed ID: 29644789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.