These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26367111)

  • 41. DNA-templated carbon nanotube field-effect transistor.
    Keren K; Berman RS; Buchstab E; Sivan U; Braun E
    Science; 2003 Nov; 302(5649):1380-2. PubMed ID: 14631035
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA origami-based nanoribbons: assembly, length distribution, and twist.
    Jungmann R; Scheible M; Kuzyk A; Pardatscher G; Castro CE; Simmel FC
    Nanotechnology; 2011 Jul; 22(27):275301. PubMed ID: 21597145
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assembly of barcode-like nucleic acid nanostructures.
    Wang P; Tian C; Li X; Mao C
    Small; 2014 Oct; 10(19):3923-6. PubMed ID: 24978689
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In-Phase Assembly of Slim DNA Lattices with Small Circular DNA Motifs via Short Connections of 11 and 16 Base Pairs.
    Wang M; Guo X; Jiang C; Wang X; Xiao SJ
    Chembiochem; 2016 Jun; 17(12):1132-7. PubMed ID: 27187004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Covalent tethering of protruding arms for addressable DNA nanostructures.
    Saccà B; Niemeyer CM
    Small; 2011 Oct; 7(20):2887-98. PubMed ID: 21901826
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical evidence for nucleated self-assembly of DNA brick structures.
    Reinhardt A; Frenkel D
    Phys Rev Lett; 2014 Jun; 112(23):238103. PubMed ID: 24972230
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures.
    Ke Y; Liu Y; Zhang J; Yan H
    J Am Chem Soc; 2006 Apr; 128(13):4414-21. PubMed ID: 16569019
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Atomic force microscopy for protein nanotechnology.
    Sokolov DV
    Methods Mol Biol; 2013; 996():323-67. PubMed ID: 23504433
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanostructures: the manifold faces of DNA.
    Smith LM
    Nature; 2006 Mar; 440(7082):283-4. PubMed ID: 16541053
    [No Abstract]   [Full Text] [Related]  

  • 50. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra.
    He Y; Ye T; Su M; Zhang C; Ribbe AE; Jiang W; Mao C
    Nature; 2008 Mar; 452(7184):198-201. PubMed ID: 18337818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Force fluctuation on pulling a ssDNA from a carbon nanotube.
    Li Z; Yang W
    Biomech Model Mechanobiol; 2011 Apr; 10(2):221-7. PubMed ID: 20526730
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes.
    Wang Z; Li H; Liu Z; Shi Z; Lu J; Suenaga K; Joung SK; Okazaki T; Gu Z; Zhou J; Gao Z; Li G; Sanvito S; Wang E; Iijima S
    J Am Chem Soc; 2010 Oct; 132(39):13840-7. PubMed ID: 20828123
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Noncalssical multiscale modeling of ssDNA manipulation using a CNT-nanocarrier based on AFM.
    Korayem MH; Estaji M; Homayooni A
    Colloids Surf B Biointerfaces; 2017 Oct; 158():102-111. PubMed ID: 28686901
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNA as invisible ink for AFM nanolithography.
    Liang J; Castronovo M; Scoles G
    J Am Chem Soc; 2012 Jan; 134(1):39-42. PubMed ID: 22148469
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Templated synthesis of DNA nanotubes with controlled, predetermined lengths.
    Lo PK; Altvater F; Sleiman HF
    J Am Chem Soc; 2010 Aug; 132(30):10212-4. PubMed ID: 20662492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA.
    Viswanathan S; Radecka H; Radecki J
    Biosens Bioelectron; 2009 May; 24(9):2772-7. PubMed ID: 19269805
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fundamental properties of oligo double-stranded DNA/single-walled carbon nanotube nanobiohybrids.
    Yamamoto Y; Fujigaya T; Niidome Y; Nakashima N
    Nanoscale; 2010 Sep; 2(9):1767-72. PubMed ID: 20820708
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomolecular recognition ability of RecA proteins for DNA on single-walled carbon nanotubes.
    Oura S; Ito M; Nii D; Homma Y; Umemura K
    Colloids Surf B Biointerfaces; 2015 Feb; 126():496-501. PubMed ID: 25612818
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA-programmable multiplexing for scalable, renewable redox protein bio-nanoelectronics.
    Withey GD; Kim JH; Xu J
    Bioelectrochemistry; 2008 Nov; 74(1):111-7. PubMed ID: 18579451
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-assembly of DNA nanotubes with controllable diameters.
    Wilner OI; Orbach R; Henning A; Teller C; Yehezkeli O; Mertig M; Harries D; Willner I
    Nat Commun; 2011 Nov; 2():540. PubMed ID: 22086340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.