These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 26367547)

  • 1. Low threshold simultaneous multi-wavelength amplified spontaneous emission modulated by the lithium fluoride/Ag layers.
    Wei M; Xu T; Gao Y; Chen G; Wei B
    Opt Express; 2015 Jul; 23(15):18832-9. PubMed ID: 26367547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides.
    Calzado EM; Ramírez MG; Boj PG; Díaz García MA
    Appl Opt; 2012 Jun; 51(16):3287-93. PubMed ID: 22695562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport Layer Engineering Toward Lower Threshold for Perovskite Lasers.
    Zhang J; Qin J; Cai W; Tang Y; Zhang H; Wang T; Bakulin A; Hu B; Liu XK; Gao F
    Adv Mater; 2023 Jul; 35(30):e2300922. PubMed ID: 37086205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation Wavelength Independence: Toward Low-Threshold Amplified Spontaneous Emission from Carbon Nanodots.
    Zhang Y; Hu Y; Lin J; Fan Y; Li Y; Lv Y; Liu X
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25454-60. PubMed ID: 27617695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thickness-Tunable Self-Assembled Colloidal Nanoplatelet Films Enable Ultrathin Optical Gain Media.
    Erdem O; Foroutan S; Gheshlaghi N; Guzelturk B; Altintas Y; Demir HV
    Nano Lett; 2020 Sep; 20(9):6459-6465. PubMed ID: 32787166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular host-guest energy-transfer system with an ultralow amplified spontaneous emission threshold employing an ambipolar semiconducting host matrix.
    Toffanin S; Capelli R; Hwu TY; Wong KT; Plötzing T; Först M; Muccini M
    J Phys Chem B; 2010 Jan; 114(1):120-7. PubMed ID: 19961197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplified Spontaneous Emission Threshold Dependence on Determination Method in Dye-Doped Polymer and Lead Halide Perovskite Waveguides.
    Milanese S; De Giorgi ML; Cerdán L; La-Placa MG; Jamaludin NF; Bruno A; Bolink HJ; Kovalenko MV; Anni M
    Molecules; 2022 Jul; 27(13):. PubMed ID: 35807506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplified spontaneous emission from an Ag-backed red-fluorescent-dye-doped polymer film.
    Zhang D; Deng Z; Wang Q; Li B; Chen S; Wang Y; Liu Y; Ma D
    Appl Opt; 2010 Jan; 49(3):315-9. PubMed ID: 20090794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-Red Amplified Spontaneous Emission from cis-Configured Squaraine.
    Ye H; Cui L; Matsushima T; Qin C; Adachi C
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):27-31. PubMed ID: 29243913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of the amplified spontaneous emission threshold in semiconducting polymer waveguides on porous silica.
    Lahoz F; Oton CJ; Capuj N; Ferrer-González M; Cheylan S; Navarro-Urrios D
    Opt Express; 2009 Sep; 17(19):16766-75. PubMed ID: 19770893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide-range amplified spontaneous emission wavelength tuning in a solid-state dye waveguide.
    Peng X; Liu L; Wu J; Li Y; Hou Z; Xu L; Wang W; Li F; Ye M
    Opt Lett; 2000 Mar; 25(5):314-6. PubMed ID: 18059865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced threshold of optically pumped amplified spontaneous emission and narrow line-width electroluminescence at cutoff wavelength from bilayer organic waveguide devices.
    Chang JF; Huang YS; Chen PT; Kao RL; Lai XY; Chen CC; Lee CC
    Opt Express; 2015 Jun; 23(11):14695-706. PubMed ID: 26072828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration effects on spontaneous and amplified emission in benzo[c]fluorenes.
    Kazlauskas K; Kreiza G; Radiunas E; Adomėnas P; Adomėnienė O; Karpavičius K; Bucevičius J; Jankauskas V; Juršėnas S
    Phys Chem Chem Phys; 2015 May; 17(19):12935-48. PubMed ID: 25912324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WDM optical steganography based on amplified spontaneous emission noise.
    Wu B; Tait AN; Chang MP; Prucnal PR
    Opt Lett; 2014 Oct; 39(20):5925-8. PubMed ID: 25361121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the Best Empiric Method to Quantify the Amplified Spontaneous Emission Threshold in Polymeric Active Waveguides.
    Milanese S; De Giorgi ML; Anni M
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32629999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate.
    Lin GR; Lian CW; Wu CL; Lin YH
    Opt Express; 2010 Apr; 18(9):9213-9. PubMed ID: 20588768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.
    Brown J; Sharma S; Leadbetter J; Cochran S; Adamson R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1911-21. PubMed ID: 25389169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near infrared amplified spontaneous emission in a dye-doped polymeric waveguide for active plasmonic applications.
    Keshmarzi EK; Tait RN; Berini P
    Opt Express; 2014 May; 22(10):12452-60. PubMed ID: 24921362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random lasing from granular surface of waveguide with blends of PS and PMMA.
    Zhao X; Wu Z; Ning S; Liang S; Wang D; Hou X
    Opt Express; 2011 Aug; 19(17):16126-31. PubMed ID: 21934975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photodegradation effects on the emission properties of an amplifying poly(9,9-dioctylfluorene) active waveguide operating in air.
    Anni M
    J Phys Chem B; 2012 Apr; 116(15):4655-60. PubMed ID: 22452618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.