These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26367643)

  • 1. Temperature and gain tuning of plasmonic coherent perfect absorbers.
    Jung MJ; Han C; Yoon JW; Song SH
    Opt Express; 2015 Jul; 23(15):19837-45. PubMed ID: 26367643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gain-assisted critical coupling for high-performance coherent perfect absorbers.
    Yoon JW; Jung MJ; Song SH
    Opt Lett; 2015 May; 40(10):2309-12. PubMed ID: 26393726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating.
    Yoon JW; Koh GM; Song SH; Magnusson R
    Phys Rev Lett; 2012 Dec; 109(25):257402. PubMed ID: 23368498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches.
    Bruck R; Muskens OL
    Opt Express; 2013 Nov; 21(23):27662-71. PubMed ID: 24514283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides.
    Li Y; Argyropoulos C
    Opt Lett; 2018 Apr; 43(8):1806-1809. PubMed ID: 29652369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic switching from coherent perfect absorption to parametric amplification in a nonlinear spoof plasmonic waveguide.
    Cui WY; Zhang J; Luo Y; Gao X; Cui TJ
    Nat Commun; 2024 Apr; 15(1):2824. PubMed ID: 38561378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities.
    ElKabbash M; Ilker E; Letsou T; Hoffman N; Yaney A; Hinczewski M; Strangi G
    Opt Lett; 2017 Sep; 42(18):3598-3601. PubMed ID: 28914911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin multi-band coherent perfect absorber in graphene with high-contrast gratings.
    Meng H; Lin Q; Xue X; Lian J; Liu G; Xu W; Zhai X; Liu Z; Chen J; Li H; Shang X; Wang L
    Opt Express; 2020 Aug; 28(16):24285-24297. PubMed ID: 32752410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable terahertz coherent perfect absorption in a monolayer graphene.
    Fan Y; Zhang F; Zhao Q; Wei Z; Li H
    Opt Lett; 2014 Nov; 39(21):6269-72. PubMed ID: 25361331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable coherent perfect absorption in a composite film.
    Dutta-Gupta S; Martin OJ; Gupta SD; Agarwal GS
    Opt Express; 2012 Jan; 20(2):1330-6. PubMed ID: 22274478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects.
    Tittl A; Harats MG; Walter R; Yin X; Schäferling M; Liu N; Rapaport R; Giessen H
    ACS Nano; 2014 Oct; 8(10):10885-92. PubMed ID: 25251075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of metamaterial surfaces with broadband absorbance.
    Wu C; Shvets G
    Opt Lett; 2012 Feb; 37(3):308-10. PubMed ID: 22297335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent perfect absorption and transparency in a nanostructured graphene film.
    Zhang J; Guo C; Liu K; Zhu Z; Ye W; Yuan X; Qin S
    Opt Express; 2014 May; 22(10):12524-32. PubMed ID: 24921370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degenerate critical coupling in all-dielectric metasurface absorbers.
    Ming X; Liu X; Sun L; Padilla WJ
    Opt Express; 2017 Oct; 25(20):24658-24669. PubMed ID: 29041411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An equivalent realization of coherent perfect absorption under single beam illumination.
    Li S; Luo J; Anwar S; Li S; Lu W; Hang ZH; Lai Y; Hou B; Shen M; Wang C
    Sci Rep; 2014 Dec; 4():7369. PubMed ID: 25482592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random anti-lasing through coherent perfect absorption in a disordered medium.
    Pichler K; Kühmayer M; Böhm J; Brandstötter A; Ambichl P; Kuhl U; Rotter S
    Nature; 2019 Mar; 567(7748):351-355. PubMed ID: 30833737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming zero-index media into geometry-invariant coherent perfect absorbers via embedded conductive films.
    Wang D; Luo J; Sun Z; Lai Y
    Opt Express; 2021 Feb; 29(4):5247-5258. PubMed ID: 33726064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of multiple near-perfect absorptions in sandwich structures containing thin metallic films.
    Liu B; Lu G; Cui L; Li J; Sun F; Liu F; Li Y; Yang T; Du G
    Opt Express; 2017 Jun; 25(12):13271-13277. PubMed ID: 28788862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.