These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26367656)

  • 1. High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing.
    Ma P; Choi DY; Yu Y; Yang Z; Vu K; Nguyen T; Mitchell A; Luther-Davies B; Madden S
    Opt Express; 2015 Jul; 23(15):19969-79. PubMed ID: 26367656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of silicon-on-insulator slot waveguide ring resonators targeting high Q-factors.
    Zhang W; Serna S; Le Roux X; Alonso-Ramos C; Vivien L; Cassan E
    Opt Lett; 2015 Dec; 40(23):5566-9. PubMed ID: 26625052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-low-power four-wave mixing wavelength conversion in high-Q chalcogenide microring resonators.
    Jiang WC; Li K; Gai X; Nolan DA; Dainese P
    Opt Lett; 2021 Jun; 46(12):2912-2915. PubMed ID: 34129572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Q chalcogenide racetrack resonators based on the multimode waveguide.
    Wang Z; Yang Z; Wang H; Zhang W; Wang R; Xu P
    Appl Opt; 2023 Mar; 62(9):2278-2282. PubMed ID: 37132866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators.
    Lin H; Li L; Zou Y; Danto S; Musgraves JD; Richardson K; Kozacik S; Murakowski M; Prather D; Lin PT; Singh V; Agarwal A; Kimerling LC; Hu J
    Opt Lett; 2013 May; 38(9):1470-2. PubMed ID: 23632521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared.
    Ma P; Choi DY; Yu Y; Gai X; Yang Z; Debbarma S; Madden S; Luther-Davies B
    Opt Express; 2013 Dec; 21(24):29927-37. PubMed ID: 24514544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000).
    Gai X; Luther-Davies B; White TP
    Opt Express; 2012 Jul; 20(14):15503-15. PubMed ID: 22772245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of microcavity-enhanced absorption spectroscopy for mid-infrared methane detection using a chalcogenide/silica-on-fluoride horizontal slot-waveguide racetrack resonator.
    Pi M; Zheng C; Peng Z; Zhao H; Lang J; Liang L; Zhang Y; Wang Y; Tittel FK
    Opt Express; 2020 Jul; 28(15):21432-21446. PubMed ID: 32752421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and fabrication of As
    Fan Z; Yan K; Zhang L; Qin J; Chen J; Wang R; Shen X
    Appl Opt; 2020 Feb; 59(6):1564-1568. PubMed ID: 32225660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses.
    Zhang X; Zhou C; Luo Y; Yang Z; Zhang W; Li L; Xu P; Zhang P; Xu T
    Opt Express; 2022 Jan; 30(3):3866-3875. PubMed ID: 35209636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Q silicon-on-insulator optical rib waveguide racetrack resonators.
    Kiyat I; Aydinli A; Dagli N
    Opt Express; 2005 Mar; 13(6):1900-5. PubMed ID: 19495071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mid-infrared high-Q germanium microring resonator.
    Xiao TH; Zhao Z; Zhou W; Chang CY; Set SY; Takenaka M; Tsang HK; Cheng Z; Goda K
    Opt Lett; 2018 Jun; 43(12):2885-2888. PubMed ID: 29905715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High quality chalcogenide-silica hybrid wedge resonator.
    Kang G; Krogstad MR; Grayson M; Kim DG; Lee H; Gopinath JT; Park W
    Opt Express; 2017 Jun; 25(13):15581-15589. PubMed ID: 28788980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges.
    Carlie N; Musgraves JD; Zdyrko B; Luzinov I; Hu J; Singh V; Agarwal A; Kimerling LC; Canciamilla A; Morichetti F; Melloni A; Richardson K
    Opt Express; 2010 Dec; 18(25):26728-43. PubMed ID: 21165023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mid-infrared GaAs/AlGaAs micro-ring resonators characterized
    Haas J; Artmann P; Mizaikoff B
    RSC Adv; 2019 Mar; 9(15):8594-8599. PubMed ID: 35518680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators.
    Smith CJ; Shankar R; Laderer M; Frish MB; Loncar M; Allen MG
    Opt Express; 2015 Mar; 23(5):5491-9. PubMed ID: 25836782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High quality factor and high confinement silicon resonators using etchless process.
    Griffith A; Cardenas J; Poitras CB; Lipson M
    Opt Express; 2012 Sep; 20(19):21341-5. PubMed ID: 23037257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High quality factor polymeric Fabry-Perot resonators utilizing a polymer waveguide.
    Tadayon MA; Baylor ME; Ashkenazi S
    Opt Express; 2014 Mar; 22(5):5904-12. PubMed ID: 24663928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of high quality GeSbSe reflowed and etched ring resonators.
    Grayson M; Xu B; Shanavas T; Zohrabi M; Bae K; Gopinath JT; Park W
    Opt Express; 2022 Aug; 30(17):31107-31121. PubMed ID: 36242200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Athermal waveguides for optical communication wavelengths.
    Milošević MM; Emerson NG; Gardes FY; Chen X; Adikaari AA; Mashanovich GZ
    Opt Lett; 2011 Dec; 36(23):4659-61. PubMed ID: 22139275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.