These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26367679)

  • 21. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays.
    Wang ZY; Zhang RJ; Wang SY; Lu M; Chen X; Zheng YX; Chen LY; Ye Z; Wang CZ; Ho KM
    Sci Rep; 2015 Jan; 5():7810. PubMed ID: 25589290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light absorption and emission in nanowire array solar cells.
    Kupec J; Stoop RL; Witzigmann B
    Opt Express; 2010 Dec; 18(26):27589-605. PubMed ID: 21197033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A high efficiency dual-junction solar cell implemented as a nanowire array.
    Yu S; Witzigmann B
    Opt Express; 2013 Jan; 21 Suppl 1():A167-72. PubMed ID: 23389268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications.
    Hu L; Chen G
    Nano Lett; 2007 Nov; 7(11):3249-52. PubMed ID: 17927257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effective utilization of visible light (including lambda > 600 nm) in phenol degradation with p-silicon nanowire/TiO2 core/shell heterojunction array cathode.
    Yu H; Li X; Quan X; Chen S; Zhang Y
    Environ Sci Technol; 2009 Oct; 43(20):7849-55. PubMed ID: 19921904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Broadband light absorption enhancement in randomly rotated elliptical nanohole arrays for photovoltaic application.
    Qin X; Wu Y; Zhang Z; Xia Z; Zhou J; Zhu J
    Appl Opt; 2019 Feb; 58(4):1152-1157. PubMed ID: 30874166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector.
    Zhou K; Guo Z; Li X; Jung JY; Jee SW; Park KT; Um HD; Wang N; Lee JH
    Opt Express; 2012 Sep; 20 Suppl 5():A777-87. PubMed ID: 23037544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Advances in Structuring and Patterning Silicon Nanowire Arrays for Engineering Light Absorption in Three Dimensions.
    Bartschmid T; Wendisch FJ; Farhadi A; Bourret GR
    ACS Appl Energy Mater; 2022 May; 5(5):5307-5317. PubMed ID: 35647497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Third optical harmonic generation reveals circular anisotropy in tilted silicon nanowire array.
    Ustinov AS; Osminkina LA; Presnov DE; Golovan LA
    Opt Lett; 2021 Mar; 46(5):1189-1192. PubMed ID: 33649689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Absorption of light in a single vertical nanowire and a nanowire array.
    Anttu N
    Nanotechnology; 2019 Mar; 30(10):104004. PubMed ID: 30572314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silicon nanowire arrays for label-free detection of DNA.
    Gao Z; Agarwal A; Trigg AD; Singh N; Fang C; Tung CH; Fan Y; Buddharaju KD; Kong J
    Anal Chem; 2007 May; 79(9):3291-7. PubMed ID: 17407259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices.
    Nowzari A; Heurlin M; Jain V; Storm K; Hosseinnia A; Anttu N; Borgström MT; Pettersson H; Samuelson L
    Nano Lett; 2015 Mar; 15(3):1809-14. PubMed ID: 25671437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Samuelson L; Lehmann S; Pistol ME
    Opt Express; 2014 Nov; 22(23):29204-12. PubMed ID: 25402159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles.
    Liu K; Qu S; Zhang X; Tan F; Wang Z
    Nanoscale Res Lett; 2013 Feb; 8(1):88. PubMed ID: 23418988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition.
    Kato S; Kurokawa Y; Miyajima S; Watanabe Y; Yamada A; Ohta Y; Niwa Y; Hirota M
    Nanoscale Res Lett; 2013 Aug; 8(1):361. PubMed ID: 23968156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications.
    Bao H; Ruan X
    Opt Lett; 2010 Oct; 35(20):3378-80. PubMed ID: 20967072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced absorption in silicon nanocone arrays for photovoltaics.
    Wang B; Leu PW
    Nanotechnology; 2012 May; 23(19):194003. PubMed ID: 22538835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping.
    Dong G; Liu F; Liu J; Zhang H; Zhu M
    Nanoscale Res Lett; 2013 Dec; 8(1):544. PubMed ID: 24369781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS.
    Sharma M; Pudasaini PR; Ruiz-Zepeda F; Elam D; Ayon AA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4356-63. PubMed ID: 24568116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.