These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Enhanced performance of cadmium selenide quantum dot-sensitized solar cells by incorporating long afterglow europium, dysprosium co-doped strontium aluminate phosphors. Sun H; Pan L; Piao X; Sun Z J Colloid Interface Sci; 2014 Feb; 416():81-5. PubMed ID: 24370405 [TBL] [Abstract][Full Text] [Related]
5. A flexible luminescence film with temperature and infrared response based on Eu Song H; Wu X; Zhang Y; Xu S; Li B Heliyon; 2022 Aug; 8(8):e10045. PubMed ID: 35991996 [TBL] [Abstract][Full Text] [Related]
7. Persistent luminescence from Eu(3+) in SnO2 nanoparticles. Kong J; Zheng W; Liu Y; Li R; Ma E; Zhu H; Chen X Nanoscale; 2015 Jul; 7(25):11048-54. PubMed ID: 26052820 [TBL] [Abstract][Full Text] [Related]
8. Luminescent Afterglow Behavior in the M₂Si₅N₈: Eu Family (M = Ca, Sr, Ba). Van den Eeckhout K; Smet PF; Poelman D Materials (Basel); 2011 May; 4(6):980-990. PubMed ID: 28879962 [TBL] [Abstract][Full Text] [Related]
9. Long afterglow Sr4Al14O25:Eu,Dy phosphors as both scattering and down converting layer for CdS quantum dot-sensitized solar cells. Sun H; Pan L; Zhu G; Piao X; Zhang L; Sun Z Dalton Trans; 2014 Oct; 43(40):14936-41. PubMed ID: 25252128 [TBL] [Abstract][Full Text] [Related]
10. Identification of Dy^{3+}/Dy^{2+} as Electron Trap in Persistent Phosphors. Joos JJ; Korthout K; Amidani L; Glatzel P; Poelman D; Smet PF Phys Rev Lett; 2020 Jul; 125(3):033001. PubMed ID: 32745429 [TBL] [Abstract][Full Text] [Related]
11. [Study on self-propagating synthesis of the doped SrAl2O4 rare earth long afterglow phosphors]. Li Y; Zhao YL; Liu YG; Wei XY; Ren Y Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jun; 31(6):1467-71. PubMed ID: 21847911 [TBL] [Abstract][Full Text] [Related]
12. Preparing and testing the reliability of long-afterglow SrAl Wang L; Shang Z; Shi M; Cao P; Yang B; Zou J RSC Adv; 2020 Mar; 10(19):11418-11425. PubMed ID: 35495329 [TBL] [Abstract][Full Text] [Related]
13. [Broad excitation band alkaline-earth silicate luminescent materials activated by rare earth and its applications]. Xia W; Lei MK; Luo XX; Xiao ZG Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jan; 28(1):41-6. PubMed ID: 18422116 [TBL] [Abstract][Full Text] [Related]
14. Temperature dependent persistent luminescence: Evaluating the optimum working temperature. Du J; De Clercq OQ; Poelman D Sci Rep; 2019 Jul; 9(1):10517. PubMed ID: 31324845 [TBL] [Abstract][Full Text] [Related]
15. Strontium Aluminate Persistent Luminescent Single Crystals: Linear Scaling of Emission Intensity with Size Is Affected by Reabsorption. Van der Heggen D; Joos JJ; Rytz D; Viana B; Smet PF J Phys Chem Lett; 2023 Nov; 14(45):10151-10157. PubMed ID: 37924325 [TBL] [Abstract][Full Text] [Related]
16. Fabrication Flexible and Luminescent Nanofibrillated Cellulose Films with Modified SrAl₂O₄: Eu, Dy Phosphors via Nanoscale Silica and Aminosilane. Zhang L; Lyu S; Chen Z; Wang S Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29786673 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, persistent luminescence, and thermoluminescence properties of yellow Sr3SiO5:Eu2+,RE3+ (RE=Ce, Nd, Dy, Ho, Er, Tm, Yb) and orange-red Sr(3-x)Ba(x)SiO5:Eu2+, Dy3+ phosphor. Li Y; Li B; Ni C; Yuan S; Wang J; Tang Q; Su Q Chem Asian J; 2014 Feb; 9(2):494-9. PubMed ID: 24203579 [TBL] [Abstract][Full Text] [Related]
18. The Improvement of Moisture Resistance and Organic Compatibility of SrAl Lyu L; Chen Y; Yu L; Li R; Zhang L; Pei J Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963259 [TBL] [Abstract][Full Text] [Related]
19. Ag nanoparticles significantly improve the slow decay brightness of SrAl Hai O; Pei M; Ren Q; Wu X; Yang E; Xu D; Zhu J Dalton Trans; 2022 Feb; 51(6):2287-2295. PubMed ID: 35040842 [TBL] [Abstract][Full Text] [Related]