These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26367968)

  • 1. Robust terahertz self-heterodyne system using a phase noise compensation technique.
    Song H; Song JI
    Opt Express; 2015 Aug; 23(16):21181-92. PubMed ID: 26367968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz balanced self-heterodyne spectrometer with SNR-limited phase-measurement sensitivity.
    Hisatake S; Koda Y; Nakamura R; Hamada N; Nagatsuma T
    Opt Express; 2015 Oct; 23(20):26689-95. PubMed ID: 26480182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterodyne terahertz detection through electronic and optoelectronic mixers.
    Lin YJ; Jarrahi M
    Rep Prog Phys; 2020 Jun; 83(6):066101. PubMed ID: 32208378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-wave terahertz field imaging based on photonics-based self-heterodyne electro-optic detection.
    Hisatake S; Nagatsuma T
    Opt Lett; 2013 Jul; 38(13):2307-10. PubMed ID: 23811911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-low phase-noise photonic terahertz imaging system based on two-tone square-law detection.
    Dülme S; Steeg M; Mohammad I; Schrinski N; Tebart J; Stöhr A
    Opt Express; 2020 Sep; 28(20):29631-29643. PubMed ID: 33114858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector.
    Steed RJ; Pozzi F; Fice MJ; Renaud CC; Rogers DC; Lealman IF; Moodie DG; Cannard PJ; Lynch C; Johnston L; Robertson MJ; Cronin R; Pavlovic L; Naglic L; Vidmar M; Seeds AJ
    Opt Express; 2011 Oct; 19(21):20048-53. PubMed ID: 21997015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser frequency noise characterization by self-heterodyne with both long and short delay.
    Ma W; Xiong B; Sun C; Ke X; Hao Z; Wang L; Wang J; Han Y; Li H; Luo Y
    Appl Opt; 2019 May; 58(13):3555-3563. PubMed ID: 31044854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-referenced spectral domain interferometry for improved signal-to-noise measurement of terahertz radiation.
    Sharma G; Singh K; Ibrahim A; Al-Naib I; Morandotti R; Vidal F; Ozaki T
    Opt Lett; 2013 Aug; 38(15):2705-7. PubMed ID: 23903117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer.
    Ducournau G; Szriftgiser P; Akalin T; Beck A; Bacquet D; Peytavit E; Lampin JF
    Opt Lett; 2011 Jun; 36(11):2044-6. PubMed ID: 21633443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Implementation of a Subnanometer Heterodyne Interference Signal Processing Algorithm with a Dynamic Filter.
    Zeng Q; Zhao Z; Xiong X; Du H; Zhang W; Zhang Z; Wang P; Lei L
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-coherence heterodyne interferometry using an achromatic frequency shifter based on a frequency-domain optical delay line.
    Lu SH; Chiang HP; Lin CY; Chou CC
    Appl Opt; 2014 Feb; 53(6):1047-51. PubMed ID: 24663300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband phase noise measurement of single-frequency lasers by the short-fiber recirculating delayed self-heterodyne method.
    Chen X; Liu J; Jiang J; Yang S; Yu X
    Opt Lett; 2024 Feb; 49(3):622-625. PubMed ID: 38300074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of terahertz laser diagnostics for electron density measurements.
    Kawahata K; Akiyama T; Tanaka K; Nakayama K; Okajima S
    Rev Sci Instrum; 2008 Oct; 79(10):10E707. PubMed ID: 19044525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.
    Yang Y; Foster M; Khurgin JB; Cooper AB
    Opt Express; 2012 Jul; 20(16):17600-9. PubMed ID: 23038313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. System combining the best features of heterodyne and direct detection receivers.
    Brookner E
    Appl Opt; 1971 May; 10(5):1009-11. PubMed ID: 20094593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sensitive, low noise, DC to 12 MHz, large area photodiode preamplifier for photothermal heterodyne imaging.
    Zeng ZC; Schultz ZD
    Rev Sci Instrum; 2018 Aug; 89(8):083105. PubMed ID: 30184642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-lock control considerations for coherently combined lasers.
    Armor JB; Robinson SR
    Appl Opt; 1979 Sep; 18(18):3165-75. PubMed ID: 20212824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser heterodyne spectroradiometer assisted by self-calibrated wavelength modulation spectroscopy for atmospheric CO
    Deng H; Li M; He Y; Xu Z; Yao L; Chen B; Yang C; Kan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118071. PubMed ID: 31958604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excess noise reduction by optical technique in amplitude-sensitive heterodyne interferometer for small differential phase detection.
    Teng HK; Lang KC
    Appl Opt; 2008 Dec; 47(36):6860-70. PubMed ID: 19104537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency noise reduction performance of a feed-forward heterodyne technique: application to an actively mode-locked laser diode.
    Sahni MO; Trebaol S; Bramerie L; Joindot M; Ó Dúill SP; Murdoch SG; Barry LP; Besnard P
    Opt Lett; 2017 Oct; 42(19):4000-4003. PubMed ID: 28957182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.