These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 26367988)

  • 1. Wavefront detection method of a single-sensor based adaptive optics system.
    Wang C; Hu L; Xu H; Wang Y; Li D; Wang S; Mu Q; Yang C; Cao Z; Lu X; Xuan L
    Opt Express; 2015 Aug; 23(16):21403-13. PubMed ID: 26367988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.
    Wang S; Yang P; Xu B; Dong L; Ao M
    Opt Express; 2015 Feb; 23(4):5052-64. PubMed ID: 25836540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes.
    Gilles L; Ellerbroek BL
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A76-83. PubMed ID: 21045893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor.
    Yin X; Li X; Zhao L; Fang Z
    Appl Opt; 2009 Nov; 48(32):6088-98. PubMed ID: 19904304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time delay compensation method for tip-tilt control in adaptive optics system.
    Wang C; Hu L; Wang Y; Wang S; Mu Q; Li D; Cao Z; Yang C; Xu H; Xuan L
    Appl Opt; 2015 Apr; 54(11):3383-8. PubMed ID: 25967327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curvature wavefront sensing for the large synoptic survey telescope.
    Xin B; Claver C; Liang M; Chandrasekharan S; Angeli G; Shipsey I
    Appl Opt; 2015 Oct; 54(30):9045-54. PubMed ID: 26560396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.
    Plantet C; Meimon S; Conan JM; Fusco T
    Opt Express; 2015 Nov; 23(22):28619-33. PubMed ID: 26561131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive optics system for a short wavelength mid-IR laser based on a Shack-Hartmann wavefront sensor and analysis of thermal noise impacts.
    Zhou H; Pilar J; Smrz M; Chen L; Čech M; Mocek T
    Appl Opt; 2022 Sep; 61(27):7958-7965. PubMed ID: 36255916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptable Shack-Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation.
    Lechner D; Zepp A; Eichhorn M; Gładysz S
    Opt Express; 2020 Nov; 28(24):36188-36205. PubMed ID: 33379719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution retinal imaging with micro adaptive optics system.
    Niu S; Shen J; Liang C; Zhang Y; Li B
    Appl Opt; 2011 Aug; 50(22):4365-75. PubMed ID: 21833112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.
    Robert C; Michau V; Fleury B; Magli S; Vial L
    Opt Express; 2012 Jul; 20(14):15636-53. PubMed ID: 22772257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of phase singularities with a Shack-Hartmann wavefront sensor.
    Chen M; Roux FS; Olivier JC
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):1994-2002. PubMed ID: 17728823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope.
    Cao Z; Mu Q; Hu L; Li D; Peng Z; Liu Y; Xuan L
    Opt Express; 2009 Feb; 17(4):2530-7. PubMed ID: 19219156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-sky performances of an optical phasing sensor based on a cylindrical lenslet array for segmented telescopes.
    Gonte F; Mazzoleni R; Surdej I; Noethe L
    Appl Opt; 2011 Apr; 50(12):1660-7. PubMed ID: 21509056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive optics wide-field microscopy using direct wavefront sensing.
    Azucena O; Crest J; Kotadia S; Sullivan W; Tao X; Reinig M; Gavel D; Olivier S; Kubby J
    Opt Lett; 2011 Mar; 36(6):825-7. PubMed ID: 21403697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibrating the interaction matrix for the LINC-NIRVANA high layer wavefront sensor.
    Zhang X; Arcidiacono C; Conrad AR; Herbst TM; Gaessler W; Bertram T; Ragazzoni R; Schreiber L; Diolaiti E; Kuerster M; Bizenberger P; Meschke D; Rix HW; Rao C; Mohr L; Briegel F; Kittmann F; Berwein J; Trowitzsch J
    Opt Express; 2012 Mar; 20(7):8078-92. PubMed ID: 22453479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible light high-resolution imaging system for large aperture telescope by liquid crystal adaptive optics with phase diversity technique.
    Xu Z; Yang C; Zhang P; Zhang X; Cao Z; Mu Q; Sun Q; Xuan L
    Sci Rep; 2017 Aug; 7(1):10034. PubMed ID: 28855552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of wavefront sensor models for simulation of adaptive optics.
    Wu Z; Enmark A; Owner-Petersen M; Andersen T
    Opt Express; 2009 Oct; 17(22):20575-83. PubMed ID: 19997286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.
    Marino J; Wöger F
    Appl Opt; 2014 Feb; 53(4):685-93. PubMed ID: 24514185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.